Muutke küpsiste eelistusi

E-raamat: Quantum-Enhanced Nonlinear Spectroscopy

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 10-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319443973
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 10-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319443973

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber"s photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simul

ations.

Introduction.- Background.- Nonlinear Optical Signals.- Excited State Distributions and Fluorescence Signals.- Pump-Probe Measurements with Entangled Photons.- Interferometric Setups.- Frequency Conversion.- Trapped Ion Spectroscopy.- Conclusions and Outlook.
1 Introduction
1(34)
1.1 Motivation
1(3)
1.2 Nonlinear Optical Spectroscopy
4(8)
1.2.1 Nonlinear Spectroscopy of Potassium
8(2)
1.2.2 Molecular Aggregates
10(2)
1.3 Entangled Photons
12(10)
1.3.1 Parametric Downconversion
13(2)
1.3.2 Entangled-Photon Interferometry
15(2)
1.3.3 Entangled-Photon Spectroscopy
17(5)
1.4 Trapped Ions
22(2)
1.5 Time and Energy Scales in This Dissertation
24(11)
References
25(10)
2 Nonlinear Optical Signals
35(58)
2.1 Motivation and Overview
35(2)
2.2 Light-Matter Hamiltonian and Liouville Space Notation
37(4)
2.2.1 Light-Matter Interaction
37(2)
2.2.2 Liouville Space Notation
39(2)
2.3 Quantum Optical Field Measurements
41(9)
2.3.1 Field Measurements
42(5)
2.3.2 Fluorescence Signals
47(2)
2.3.3 Classical Versus Quantum Response Functions
49(1)
2.4 Effective Interactions in Ion Chains
50(12)
2.4.1 Phonon Excitation by Stimulated Raman Scattering
51(10)
2.4.2 Electronic Transitions
61(1)
2.5 Diagram Construction
62(13)
2.5.1 Loop Diagrams
62(5)
2.5.2 Unrestricted Loop Diagrams
67(3)
2.5.3 Ladder Diagrams
70(3)
2.5.4 Time Versus Frequency Domain Expressions
73(1)
2.5.5 Impulsive Limit
74(1)
2.6 Susceptibilities Versus Transition Amplitudes in the Quantum Domain
75(8)
2.6.1 Linear Absorption
75(3)
2.6.2 Third-Order Absorption
78(5)
2.7 Synopsis: Diagrammatics in a Nutshell
83(10)
2.7.1 Loop Diagrams
84(2)
2.7.2 Ladder Diagrams
86(2)
2.7.3 Benefits of the Diagrammatic Representation
88(1)
References
89(4)
3 Excited State Distributions and Fluorescence Signals
93(50)
3.1 Excursion: Matter Correlations Induced by Coupling to Quantum Light
94(6)
3.1.1 Classical Coherent Light
98(1)
3.1.2 Superpositions of Two-Photon Fock States
99(1)
3.2 Excited State Distributions and Fluorescence
100(3)
3.3 Two-Photon Induced Fluorescence (TPIF)
103(10)
3.3.1 Entangled Two-Photon Induced Fluorescence
105(3)
3.3.2 Intensity Crossover
108(5)
3.4 The Bacterial Reaction Center
113(10)
3.4.1 The System
113(3)
3.4.2 Entangled Photons
116(4)
3.4.3 Classical Light
120(1)
3.4.4 Correlated Separable State
121(2)
3.5 Open Systems
123(11)
3.5.1 Ladder Diagrams
123(2)
3.5.2 Entangled Photons
125(4)
3.5.3 Correlated Separable State
129(2)
3.5.4 Time-Energy Uncertainty
131(3)
3.6 Fluorescence Signals of the Bacterial Reaction Center
134(4)
3.7 Summary
138(5)
References
140(3)
4 Pump-Probe Measurements with Entangled Photons
143(24)
4.1 Absorption Signals
143(4)
4.2 Pump-Probe-Like Signals of Model Systems
147(14)
4.2.1 Linear Response
148(1)
4.2.2 The Signal
149(4)
4.2.3 Off-Resonant Intermediate States
153(1)
4.2.4 Resonant Intermediate States
154(5)
4.2.5 Comparison: Classical Laser Pulses
159(1)
4.2.6 Intensity Crossover
160(1)
4.3 Pump-Probe Signals of the Bacterial Reaction Center
161(3)
4.4 Summary
164(3)
References
164(3)
5 Interferometric Setups
167(24)
5.1 Frequency-Resolved Measurements
168(3)
5.1.1 Classical Measurements
170(1)
5.2 Two-State Jump Model
171(10)
5.2.1 Frequency Domain Expressions
173(1)
5.2.2 Results
174(7)
5.3 Interferometric Signals of the Bacterial Reaction Center
181(7)
5.3.1 Frequency Domain Signals
181(1)
5.3.2 Classical Pump-Probe Signal
182(2)
5.3.3 Two-Photon Counting Setup
184(4)
5.4 Summary
188(3)
References
189(2)
6 Frequency Conversion
191(14)
6.1 Frequency Conversion Hamiltonian
192(3)
6.2 Field Correlation Functions
195(3)
6.2.1 Two-Point Correlation Function
195(2)
6.2.2 Four-Point Correlation Function
197(1)
6.3 Transition Amplitudes
198(2)
6.4 Simulations
200(3)
6.5 Summary
203(2)
References
204(1)
7 Trapped Ion Spectroscopy
205(28)
7.1 Trapped Ion Systems
206(3)
7.1.1 Motional Degrees of Freedom
206(2)
7.1.2 Electronic Degrees of Freedom
208(1)
7.2 Diagram Construction
209(3)
7.2.1 Diagram Rules
211(1)
7.3 Three-Pulse Schemes - Single Quantum Coherence
212(9)
7.3.1 Phonon Transport
212(4)
7.3.2 Steady State Currents
216(2)
7.3.3 (Quantum) Phase Transitions
218(2)
7.3.4 Multiple Excitations in the SQC Signal
220(1)
7.4 Five-Pulse Schemes - Double Quantum Coherence and Photon Echo
221(7)
7.4.1 Detection of Anharmonicities
221(3)
7.4.2 Multi-exciton Transport
224(2)
7.4.3 Population Decay
226(2)
7.5 2D Lineshapes
228(2)
7.6 Summary
230(3)
References
231(2)
8 Conclusions and Outlook
233(6)
References
237(2)
Appendix A Parametric Downconversion 239(16)
Appendix B The Bacterial Reaction Center of Blastochloris viridis 255(3)
References 258