Muutke küpsiste eelistusi

E-raamat: Quantum Optics: Taming the Quantum

  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 24-Jul-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030761837
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 24-Jul-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030761837

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research.

Arvustused

Quantum Optics is highly recommended. comprehensive in its advanced treatment of the theorys mathematical and physical foundations, and in its description of the key experiments and devices; clearly written and well illustrated. A suggested prerequisite is a rigorous introductory course on quantum optics. the exemplary, detailed treatments of entanglement, measurements, laser cooling and optical lattices, gravity, and dark matter and energy are notable. Problem sets and references augment the readers understanding. (Barry R. Masters, Optics & Photonics News, osa-opn.org, January 27, 2022)

1 Semiclassical Atom-Light Interaction 1(28)
1.1 Multipole Expansion: A Brief Summary
1(4)
1.2 The Lorentz Atom
5(6)
1.3 Two-Level Atoms
11(10)
1.3.1 Hamiltonian
11(4)
1.3.2 Optical Bloch Equations
15(2)
1.3.3 Relaxation Mechanisms
17(2)
1.3.4 Density Matrix Equations
19(2)
Problems
21(5)
References
26(3)
2 Electromagnetic Field Quantization 29(46)
2.1 Quantum Harmonic Oscillator
29(5)
2.2 Electromagnetic Field Quantization
34(6)
2.2.1 Single-Mode Field
34(3)
2.2.2 Multimode Field
37(3)
2.3 States of the Field
40(17)
2.3.1 Single-Mode Field in Thermal Equilibrium
40(4)
2.3.2 Coherent States
44(4)
2.3.3 Squeezed States
48(9)
2.4 Photodetection and Correlation Functions
57(6)
2.4.1 Detection by Absorption
57(3)
2.4.2 Balanced Homodyne Detection
60(3)
2.5 Quasiprobability Distributions
63(7)
Problems
70(3)
References
73(2)
3 The Jaynes-Cummings Model 75(22)
3.1 The Linchpin of Quantum Optics
75(5)
3.2 Quantum Rabi Oscillations
80(1)
3.3 Collapse and Revivals
81(2)
3.4 Single-Mode Spontaneous Emission
83(2)
3.5 Repeated Field Measurements
85(2)
3.6 The Quantum Rabi Model
87(6)
Problems
93(2)
References
95(2)
4 Composite Systems and Entanglement 97(26)
4.1 The EPR Paradox
98(1)
4.2 Quantum Entanglement
99(7)
4.2.1 Schmidt Decomposition and Maximum Entanglement
101(2)
4.2.2 Monogamy of Entanglement
103(3)
4.3 Bell's Inequalities
106(7)
4.4 Quantum Key Distribution
113(5)
4.4.1 The BB84 Protocol
113(2)
4.4.2 No-cloning Theorem
115(1)
4.4.3 Quantum Teleportation
116(2)
Problems
118(2)
References
120(3)
5 Coupling to Reservoirs 123(40)
5.1 Spontaneous Emission in Free Space
124(7)
5.1.1 Free Space Density of Modes
125(1)
5.1.2 Weisskopf-Wigner Theory of Spontaneous Emission
126(3)
5.1.3 Superradiance and Subradiance
129(2)
5.2 Master Equation
131(13)
5.2.1 Damped Harmonic Oscillator
135(6)
5.2.2 Lindblad Form
141(1)
5.2.3 Fokker-Planck Equation
141(3)
5.3 Langevin Equations
144(7)
5.4 Monte Carlo Wave Functions
151(5)
5.4.1 Quantum Trajectories
152(4)
5.5 Input-Output Formalism
156(4)
Problems
160(2)
References
162(1)
6 Quantum Measurements 163(24)
6.1 The von Neumann Postulate
164(1)
6.2 Measurement Back Action
165(7)
6.2.1 The Standard Quantum Limit
166(3)
6.2.2 Quantum Non-demolition Measurements
169(3)
6.3 Continuous Measurements
172(8)
6.3.1 Continuous Projective Measurements
172(2)
6.3.2 Positive Operator-Valued Measures
174(1)
6.3.3 Weak Continuous Measurements
175(2)
6.3.4 Continuous Field Measurements
177(3)
6.4 The Pointer Basis
180(3)
Problems
183(2)
References
185(2)
7 Tailoring the Environment-Cavity QED 187(42)
7.1 Enhanced and Inhibited Spontaneous Emission
188(7)
7.1.1 Master Equation for the Atom-Cavity System
188(3)
7.1.2 Weak Coupling Regime
191(3)
7.1.3 Strong Coupling Regime
194(1)
7.2 The Micromaser
195(7)
7.3 Dispersive Regime
202(6)
7.4 Circuit QED
208(13)
7.4.1 LC Circuit Quantization
208(5)
7.4.2 Superconducting Qubits
213(6)
7.4.3 Field-Qubit Coupling
219(2)
7.5 The Casimir Force
221(3)
Problems
224(3)
References
227(2)
8 Mechanical Effects of Light 229(32)
8.1 Semiclassical Atom-Field Interaction Revisited
230(1)
8.2 Gradient and Radiation Pressure Forces
231(6)
8.3 Dissipation
237(3)
8.4 Atomic Diffraction
240(8)
8.4.1 Raman-Nath Regime
242(2)
8.4.2 Bragg Regime
244(2)
8.4.3 Stern-Gerlach Regime
246(2)
8.5 Spontaneous Emission
248(1)
8.6 Atom Interferometers
249(6)
Problems
255(2)
References
257(4)
9 Laser Cooling 261(28)
9.1 Doppler Cooling
261(4)
9.2 Sisyphus Cooling
265(6)
9.3 Subrecoil Cooling
271(3)
9.4 Cavity Cooling
274(5)
9.5 Sideband Cooling
279(4)
9.6 Evaporative Cooling
283(2)
Problems
285(1)
References
286(3)
10 Bose-Einstein Condensation 289(36)
10.1 Phenomenology
290(5)
10.2 BEC in Traps
295(4)
10.3 Schrodinger Field Quantization
299(13)
10.3.1 The Hartree Approximation
306(3)
10.3.2 Quasiparticles
309(3)
10.4 Ultracold Atoms on Optical Lattices
312(8)
10.4.1 The Bose-Hubbard Model
314(6)
Problems
320(2)
References
322(3)
11 Quantum Optomechanics 325(40)
11.1 Classical Analysis
327(8)
11.1.1 Static Phenomena: Optical Spring Effect
331(1)
11.1.2 Effects of Retardation: Cold Damping
332(3)
11.2 Quantum Theory
335(5)
11.3 Beyond the Ground State
340(9)
11.3.1 Linearized Coupling
341(4)
11.3.2 Quadratic Coupling
345(1)
11.3.3 Polariton Spectrum
346(3)
11.4 Standard Quantum Limit of Optomechanical Detection
349(6)
11.5 Ultracold Atoms
355(4)
11.6 Functionalization and Hybrid Systems
359(1)
Problems
360(2)
References
362(3)
12 Outlook 365(24)
12.1 Gravitation
367(12)
12.1.1 Gravitational Wave Detection
368(7)
12.1.2 Tests of the Equivalence Principle
375(2)
12.1.3 Testing the Inverse Square Law
377(1)
12.1.4 Gravitationally Induced Decoherence
377(2)
12.2 The Dark Sector
379(6)
12.2.1 Coupling to Photons
381(1)
12.2.2 Atom-Interferometric Searches
382(1)
12.2.3 Cavity Optomechanical Searches
382(3)
References
385(4)
Index 389
Pierre Meystre obtained his Physics Diploma and PhD from the Swiss Federal Institute of Technology (EPFL) in Lausanne and his Habilitation in Theoretical Physics from the Ludwig Maximilian University of Munich. He joined the Max-Planck Institute for Quantum Optics in 1977, following a postdoctoral position at the University of Arizona College of Optical Sciences. He returned to Tucson in 1986, where he is now emeritus Regents Professor of Physics and Optical Sciences. He also served as Lead Editor of Physical Review Letters and as Editor in Chief of the American Physical Society. His research interests include theoretical quantum optics, ultracold science, and quantum optomechanics. He has published well over 300 papers, and is the author of the text Elements of Quantum Optics, now in its 4th edition, together with Murray Sargent III, and of the monograph Atom Optics.  He was a recipient of the Humboldt Foundation Research Prize for Senior US Scientists, the R. W. Wood Prize of the Optical Society of America, and the Willis E. Lamb Award for Laser Science and Quantum Optics. He is a Fellow of the American Physical Society, the Optical Society of America, and the American Association for the Advancement of Science, and Honorary Professor at East China Normal University.