Muutke küpsiste eelistusi

E-raamat: Quantum Phases of Matter

(Harvard University, Massachusetts)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Apr-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009212687
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Apr-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009212687

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This modern text describes the exciting developments in many-particle quantum entanglement in matter. Its unified and pedagogical treatment of the topic makes it ideal for graduate students and researchers working in condensed matter physics, particle physics, and mathematical physics.

This modern text describes the remarkable developments in quantum condensed matter physics following the experimental discoveries of quantum Hall effects and high temperature superconductivity in the 1980s. After a review of the phases of matter amenable to an independent particle description, entangled phases of matter are described in an accessible and unified manner. The concepts of fractionalization and emergent gauge fields are introduced using the simplest resonating valence bond insulator with an energy gap, the Z2 spin liquid. Concepts in band topology and the parton method are then combined to obtain a large variety of experimentally relevant gapped states. Correlated metallic states are described, beginning with a discussion of the Kondo effect on magnetic impurities in metals. Metals without quasiparticle excitations are introduced using the Sachdev-Ye-Kitaev model, followed by a discussion of critical Fermi surfaces and strange metals. Numerous end-of-chapter problems expand readers' comprehension and reinforce key concepts.

Arvustused

'A visionary, provocative, and thoughtful text: Sachdev's narrative ties his intellectual motivation to a set of striking emergent phenomena observed in experiments on well-characterized quantum materials and devices. It explores modern topics from a systematic and unified perspective based on effective field theories. The derivations give plenty of intuitive guidance to make the physical meaning of each transformation transparent for student or expert. The author covers a broad swath of the intellectual framework that underlies many of the most interesting contemporary developments in condensed matter theory.' Steven Kivelson, Stanford University 'Quantum Phases of Matter is a rich topic with important experimental and even technological implications. Subir Sachdev is one of the leading researchers in this field. His book gives a self-contained, pedagogical exposition of many of the exciting developments in that area. Sachdev's unmatched deep insight, his comprehensive understanding of the subject, and his clear presentation skills make this book a must-read textbook for students and an extremely useful reference for researchers.' Nathan Seiberg, Institute for Advanced Study, Princeton 'Quantum Phases of Matter is a must-read magnum opus from the leading expert, revealing his deep insights and wonderfully complementing Quantum Phase Transitions, which has been the best reference on the subject since publication. This new book skilfully takes the reader on an exhilarating, yet pedagogical tour of quantum condensed matter, from the basic to the most advanced frontier topics of current research. Theorists - from students to faculty - will be eager to dig into this masterpiece, to learn the secrets of the trade from its master.' Leo Radzihovsky, University of Colorado, Boulder

Muu info

An accessible and self-contained treatment of quantum many-body theory, suitable for graduate students and researchers.
Preface xiii
1 Survey of Experiments
1(20)
1.1 Metals and Band Insulators
1(3)
1.2 Mott Insulators
4(4)
1.3 Ultracold Atoms
8(5)
1.4 The Heavy-Fermion Intermetallic Compounds
13(1)
1.5 The Cuprates
14(7)
Part I Background
2 Fermi Liquid Theory
21(12)
2.1 Free-Electron Gas
21(1)
2.2 Interacting-Electron Gas
22(3)
2.3 Specific Heat
25(1)
2.4 Compressibility
26(1)
2.5 Dynamic Response Functions
27(1)
2.6 Green's Functions and Quasiparticle Lifetime
28(4)
Problem
32(1)
3 Dilute Bose Gas
33(10)
3.1 Bogoliubov Theory
33(4)
3.2 Off-Diagonal Long-Range Order
37(1)
3.3 Path Integral Theory
38(2)
Problem
40(3)
4 Bardeen---Cooper---Schrieffer Theory of Superconductivity
43(10)
4.1 The BCS Wavefunction
43(2)
4.2 Off-Diagonal Long-Range Order
45(2)
4.3 Bogoliubov Theory
47(2)
4.4 The Energy Gap
49(3)
Problems
52(1)
5 Broken Symmetry and Superfluidity
53(6)
5.1 Ising Model and Surface Tension
54(1)
5.2 XY Model and Helicity Modulus
55(1)
5.3 Superconductors and Gauge Invariance
56(1)
5.4 The London Equation
57(1)
Problems
58(1)
6 Landau--Ginzburg Theory
59(7)
6.1 Hubbard--Stratonovich Transformation
59(2)
6.2 Expansion near Tc
61(2)
6.3 Effective Classical Theory
63(1)
6.4 Classical Dynamics
64(1)
6.5 Magnetic Field
64(1)
Problems
65(1)
7 Vortices in Superfluids and Superconductors
66(8)
7.1 Neutral Superfluids
66(3)
7.2 Charged Superfluids
69(2)
7.3 Flux Quantization
71(1)
7.4 Vortex Lattices
72(1)
Problems
73(1)
8 Boson Hubbard Model
74(13)
8.1 Lattice Hamiltonian
75(1)
8.2 Mean-Field Theory
76(3)
8.3 Continuum Quantum Field Theories
79(4)
8.4 Insulators at Non-Integer Filling
83(1)
Problems
84(3)
9 Electron Hubbard Model
87(27)
9.1 The Superexchange Interaction
89(2)
9.2 Insulating Antiferromagnets and Hard-Core Bosons
91(5)
9.3 The t--J Model and d-Wave Pairing
96(4)
9.4 Paramagnon Theory of Antiferromagnetic Metals
100(10)
Problems
110(4)
10 Relativistic Scalar Field: Diagrams
114(8)
10.1 Gaussian Integrals
115(3)
10.2 Expansion for Susceptibility
118(3)
Problems
121(1)
11 Relativistic Scalar Field: Correlation Functions
122(11)
11.1 Spectral Representation
122(5)
11.2 Correlations across the Quantum Critical Point
127(5)
Problem
132(1)
12 Fermions and Bosons in One Spatial Dimension
133(20)
12.1 Non-interacting Fermions
134(9)
12.2 Interacting Fermions
143(3)
12.3 Bosons in One Dimension
146(3)
Problems
149(4)
Part II Fractionalization and emergent gauge fields I
13 Introduction to Gapped Spin Liquids
153(10)
13.1 The RVB State
155(1)
13.2 Topological Properties
155(1)
13.3 Emergent Gauge Fields
156(3)
13.4 Excitations of the Spin Liquid
159(4)
14 Fractionalization in the XY Model in 2+1 Dimensions
163(13)
14.1 The Conventional XY Model
164(1)
14.2 The Extended XY Model
165(10)
Problems
175(1)
15 Theory of Gapped Z2 Spin Liquids
176(20)
15.1 Parton Formulation
177(3)
15.2 Mean-Field Theory
180(3)
15.3 Excitation Spectrum
183(5)
15.4 Dynamics of Excitations
188(6)
Problem
194(2)
16 Z2 Gauge Theory
196(25)
16.1 From the Large-N Path Integral to a Z2 Gauge Theory
196(3)
16.2 Hamiltonian of the Z2 Gauge Theory
199(4)
16.3 Topological Order at Small g
203(3)
16.4 Large-g Limit
206(3)
16.5 Visons and Anyon Condensation
209(5)
16.6 Models of Rydberg Atoms
214(5)
Problems
219(2)
17 Chern---Simons Gauge Theories
221(14)
17.1 Chern--Simons Theory on a Torus
222(3)
17.2 Quasiparticles and Their Statistics
225(1)
17.3 Coupling to an External Gauge Field
226(1)
17.4 Physics at the Edge
227(4)
Problems
231(4)
Part III Band topology
18 Berry Phases and Chern Numbers
235(11)
18.1 Berry Phases
235(2)
18.2 Berry Phase of a Spin
237(2)
18.3 Berry Curvature of Bloch Bands
239(4)
18.4 Chern Insulators
243(1)
Problem
244(2)
19 Integer Quantum Hall States
246(10)
19.1 Non-relativistic Particles
246(3)
19.2 Relativistic Particles (Graphene)
249(1)
19.3 Edge states
250(4)
19.4 Anomaly Inflow Arguments
254(1)
Problem
255(1)
20 Topological Insulators and Superconductors
256(13)
20.1 Su--Schrieffer--Heeger Model
257(4)
20.2 Kane--Mele Insulators
261(1)
20.3 Odd-Parity Superconductors
262(7)
Part IV Fractionalization and emergent gauge fields II
21 Parton Theories
269(5)
21.1 Spin Fractionalization into Bosonic Partons
269(1)
21.2 Spin Fractionalization into Fermionic Partons
270(2)
21.3 Quantum Hall States
272(1)
21.4 Correlated Metals
272(2)
22 The Chiral Spin Liquid
274(6)
22.1 Mean-Field theory
275(1)
22.2 Gauge Fluctuations
276(1)
22.3 Edge States
277(1)
22.4 SU(2) Gauge Theory
278(2)
23 Non-Abelian Ising Anyons
280(7)
23.1 Visons and Majorana Zero Modes
281(3)
23.2 Non-Abelian Statistics
284(2)
23.3 Connections to Odd-Parity Superconductors
286(1)
24 Fractional Quantum Hall States
287(8)
24.1 Partons
287(3)
24.2 Edge Theory of the Fractional Quantum Hall States
290(2)
24.3 Bulk Gauge Theory of the Fractional Quantum Hall States
292(2)
24.4 Moore-Read State
294(1)
25 Dualities of XY Models and U(1) Gauge Theories
295(17)
25.1 XY model in D = 1
295(2)
25.2 Vortices in the XY Model in D = 2
297(7)
25.3 U(1) Gauge Theory with Monopoles in D = 3
304(2)
25.4 Particle-Vortex Duality of the XY model in D = 3
306(5)
Problems
311(1)
26 Applications of Dualities to Spin Liquids
312(16)
26.1 U(1) Spin Liquids
312(7)
26.2 Gapped Z2 Spin Liquids
319(9)
27 Boson--Fermion and Fermion-Fermion Dualities
328(12)
27.1 Fermion--Boson Duality I
328(5)
27.2 Fermion--Boson Duality II
333(1)
27.3 Fermion--Fermion Duality
334(3)
27.4 Fractional Quantum Hall Effect: Dirac Composite Fermions
337(3)
28 Gapless Spin Liquids
340(11)
28.1 U(1) Spin Liquids on the Square Lattice: Bosonic Spinons
341(3)
28.2 U(1) Spin Liquids on the Square Lattice: Fermionic Spinons
344(1)
28.3 Gapless SU(2) Spin Liquids
344(2)
28.4 Gapless Z2 Spin Liquid on the Square Lattice
346(5)
Part V Correlated Metals
29 Kondo Impurity Model
351(17)
29.1 Resonant-Level Model
351(3)
29.2 Adding Interactions
354(1)
29.3 Renormalization Theory
355(4)
29.4 Large-M Theory
359(3)
29.5 Bose Kondo Model
362(4)
Problems
366(2)
30 The Heavy Fermi Liquid
368(13)
30.1 The Kondo Lattice Heavy Fermi Liquid
369(4)
30.2 The Luttinger Relation
373(8)
31 The Fractionalized Fermi Liquid
381(25)
31.1 The FL State in the Kondo Lattice
383(3)
31.2 Emergent Gauge Fields and Generalized Luttinger Relations
386(2)
31.3 Torus Flux Insertion and Generalized Luttinger Relations
388(7)
31.4 The FL State in the Single-Band Hubbard Model
395(11)
32 Sachdev--Ye--Kitaev Models
406(26)
32.1 Random Matrix Model: Free Fermions
407(5)
32.2 Large-N Theory of the SYK Model
412(13)
32.3 G--Σ Effective Action
425(6)
Problem
431(1)
33 Random Quantum Spin Liquids and Spin Glasses
432(19)
33.1 Classical Ising Spin Glass
433(2)
33.2 Quantum Rotor Spin Glass
435(6)
33.3 Random Heisenberg Magnet
441(10)
34 Fermi Surfaces without Quasiparticles
451(37)
34.1 Onset of Ising Ferromagnetism
452(9)
34.2 Luttinger Relation
461(1)
34.3 Fermi Surface Coupled to a Gauge Field
462(1)
34.4 Pairing Correlations
463(3)
34.5 Transport
466(3)
Appendix A Coherent-State Path Integral
469(7)
Appendix B Grassman Path Integral
476(5)
Appendix C From Spin Berry Phases to Background Gauge Charges
481(4)
Appendix D Emergent Z2 Gauge Theories
485(3)
References 488(19)
Index 507
Subir Sachdev is the Herchel Smith Professor of Physics at Harvard University. He has also held professional positions at Bell Labs and Yale University. He has been elected to national academies of science in India and the US and is a recipient of several prestigious awards, including the Dirac Medal from the International Centre for Theoretical Physics, and the Lars Onsager Prize from the American Physical Society.