Muutke küpsiste eelistusi

E-raamat: Quantum Physics Workbook For Dummies

  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Dec-2009
  • Kirjastus: For Dummies
  • Keel: eng
  • ISBN-13: 9780470589977
  • Formaat - PDF+DRM
  • Hind: 18,52 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Dec-2009
  • Kirjastus: For Dummies
  • Keel: eng
  • ISBN-13: 9780470589977

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Hands-on practice in solving quantum physics problems

Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject.

  • Explains equations in easy-to-understand terms
  • Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory

Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!

Introduction 1(1)
About This Book
1(1)
Conventions Used in This Book
1(1)
Foolish Assumptions
2(1)
How This Book Is Organized
2(1)
Getting Started with Quantum Physics
2(1)
Round and Round with Angular Momentum and Spin
2(1)
Quantum Physics in Three Dimensions
2(1)
Acting on Impulse --- Impacts in Quantum Physics
3(1)
The Part of Tens
3(1)
Icons Used in This Book
3(1)
Where to Go from Here
3(2)
Part I: Getting Started with Quantum Physics
5(90)
The Basics of Quantum Physics: Introducing State Vectors
7(30)
Describing the States of a System
7(5)
Becoming a Notation Meister with Bras and Kets
12(2)
Getting into the Big Leagues with Operators
14(4)
Introducing operators and getting into a healthy, orthonormal relationship
14(4)
Grasping Hermitian operators and adjoints
18(1)
Getting Physical Measurements with Expectation Values
18(3)
Commutators: Checking How Different Operators Really Are
21(2)
Simplifying Matters by Finding Eigenvectors and Eigenvalues
23(4)
Answers to Problems on State Vectors
27(10)
No Handcuffs Involved: Bound States in Energy Wells
37(32)
Starting with the Wave Function
37(3)
Determining Allowed Energy Levels
40(2)
Putting the Finishing Touches on the Wave Function by Normalizing It
42(2)
Translating to a Symmetric Square Well
44(1)
Banging into the Wall: Step Barriers When the Particle Has Plenty of Energy
45(3)
Hitting the Wall: Step Barriers When the Particle Has Doesn't Have Enough Energy
48(2)
Plowing through a Potential Barrier
50(4)
Answers to Problems on Bound States
54(15)
Over and Over with Harmonic Oscillators
69(26)
Total Energy: Getting On with a Hamiltonian
70(2)
Up and Down: Using Some Crafty Operators
72(2)
Finding the Energy after Using the Raising and Lowering Operators
74(2)
Using the Raising and Lowering Operators Directly on the Eigenvectors
76(1)
Finding the Harmonic Oscillator Ground State Wave Function
77(2)
Finding the Excited States' Wave Functions
79(3)
Looking at Harmonic Oscillators in Matrix Terms
82(3)
Answers to Problems on Harmonic Oscillators
85(10)
Part II: Round and Round with Angular Momentum and Spin
95(36)
Handling Angular Momentum in Quantum Physics
97(24)
Rotating Around: Getting All Angular
98(2)
Untangling Things with Commutators
100(2)
Nailing Down the Angular Momentum Eigenvectors
102(2)
Obtaining the Angular Momentum Eigenvalues
104(2)
Scoping Out the Raising and Lowering Operators' Eigenvalues
106(2)
Treating Angular Momentum with Matrices
108(4)
Answers to Problems on Angular Momentum
112(9)
Spin Makes the Particle Go Round
121(10)
Introducing Spin Eigenstates
121(3)
Saying Hello to the Spin Operators: Cousins of Angular Momentum
124(2)
Living in the Matrix: Working with Spin in Terms of Matrices
126(2)
Answers to Problems on Spin Momentum
128(3)
Part III: Quantum Physics in Three Dimensions
131(96)
Solving Problems in Three Dimensions: Cartesian Coordinates
133(28)
Taking the Schrodinger Equation to Three Dimensions
133(3)
Flying Free with Free Particles in 3-D
136(2)
Getting Physical by Creating Free Wave Packets
138(3)
Getting Stuck in a Box Well Potential
141(8)
Box potentials: Finding those energy levels
144(2)
Back to normal: Normalizing the wave function
146(3)
Getting in Harmony with 3-D Harmonic Oscillators
149(2)
Answers to Problems on 3-D Rectangular Coordinates
151(10)
Going Circular in Three Dimensions: Spherical Coordinates
161(22)
Taking It to Three Dimensions with Spherical Coordinates
162(5)
Dealing Freely with Free Particles in Spherical Coordinates
167(3)
Getting the Goods on Spherical Potential Wells
170(2)
Bouncing Around with Isotropic Harmonic Oscillators
172(3)
Answers to Problems on 3-D Spherical Coordinates
175(8)
Getting to Know Hydrogen Atoms
183(24)
Eyeing How the Schrodinger Equation Appears for Hydrogen
183(3)
Switching to Center-of-Mass Coordinates to Make the Hydrogen Atom Solvable
186(2)
Doing the Splits: Solving the Dual Schrodinger Equation
188(2)
Solving the Radial Schrodinger Equation for ψ(r)
190(5)
Juicing Up the Hydrogen Energy Levels
195(2)
Doubling Up on Energy Level Degeneracy
197(2)
Answers to Problems on Hydrogen Atoms
199(8)
Corralling Many Particles Together
207(20)
The 4-1-1 on Many-Particle Systems
207(2)
Zap! Working with Multiple-Electron Systems
209(2)
The Old Shell Game: Exchanging Particles
211(2)
Examining Symmetric and Antisymmetric Wave Functions
213(2)
Jumping into Systems of Many Distinguishable Particle
215(1)
Trapped in Square Wells: Many Distinguishable Particles
216(2)
Creating the Wave Functions of Symmetric and Antisymmetric Multi-Particle Systems
218(2)
Answers to Problems on Multiple-Particle Systems
220(7)
Part IV: Acting on Impulse --- Impacts in Quantum Physics
227(40)
Pushing with Perturbation Theory
229(16)
Examining Perturbation Theory with Energy Levels and Wave Functions
229(6)
Solving the perturbed Schrodinger equation for the first-order correction
231(2)
Solving the perturbed Schrodinger equation for the second-order correction
233(2)
Applying Perturbation Theory to the Real World
235(2)
Answers to Problems on Perturbation Theory
237(8)
One Hits the Other: Scattering Theory
245(22)
Cross Sections: Experimenting with Scattering
245(3)
A Frame of Mind: Going from the Lab Frame to the Center-of-Mass Frame
248(2)
Target Practice: Taking Cross Sections from the Lab Frame to the Center-of-Mass Frame
250(2)
Getting the Goods on Elastic Scattering
252(1)
The Born Approximation: Getting the Scattering Amplitude of Particles
253(3)
Putting the Born Approximation to the Test
256(2)
Answers to Problems on Scattering Theory
258(9)
Part V: The Part of Tens
267(16)
Ten Tips to Make Solving Quantum Physics Problems Easier
269(6)
Normalize Your Wave Functions
269(1)
Use Eigenvalues
269(1)
Meet the Boundary Conditions for Wave Functions
270(1)
Meet the Boundary Conditions for Energy Levels
270(1)
Use Lowering Operators to Find the Ground State
271(1)
Use Raising Operators to Find the Excited States
272(1)
Use Tables of Functions
273(1)
Decouple the Schrodinger Equation
274(1)
Use Two Schrodinger Equations for Hydrogen
274(1)
Take the Math One Step at a Time
274(1)
Ten Famous Solved Quantum Physics Problems
275(4)
Finding Free Particles
275(1)
Enclosing Particles in a Box
275(1)
Grasping the Uncertainty Principle
276(1)
Eyeing the Dual Nature of Light and Matter
276(1)
Solving for Quantum Harmonic Oscillators
276(1)
Uncovering the Bohr Model of the Atom
276(1)
Tunneling in Quantum Physics
277(1)
Understanding Scattering Theory
277(1)
Deciphering the Photoelectric Effect
277(1)
Unraveling the Spin of Electrons
277(2)
Ten Ways to Avoid Common Errors When Solving Problems
279(4)
Translate between Kets and Wave Functions
279(1)
Take the Complex Conjugate of Operators
279(1)
Take the Complex Conjugate of Wave Functions
280(1)
Include the Minus Sign in the Schrodinger Equation
280(1)
Include sin θ in the Laplacian in Spherical Coordinates
280(1)
Remember that λ << 1 in Perturbation Hamiltonians
281(1)
Don't Double Up on Integrals
281(1)
Use a Minus Sign for Antisymmetric Wave Functions under Particle Exchange
281(1)
Remember What a Commutator Is
282(1)
Take the Expectation Value When You Want Physical Measurements
282(1)
Index 283
Steven Holzner, PhD, taught physics at Cornell University for more than 10 years.