Muutke küpsiste eelistusi

E-raamat: Quantum Theory of Many-Body Systems: Techniques and Applications

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to

Muu info

Springer Book Archives
1 Basic Concepts.- 1.1 Introduction: Whys and Hows of Quantum Many-Body
Theory.- 1.2 Propagation Function in a One-Body Quantum Theory.- 1.3
Perturbation Theory for the Propagator.- 1.4 Second Quantization.- 1.5
Problems to
Chapter 1.- 2 Greens Functions at Zero Temperature.- 2.1 Greens
Function of The Many-Body System: Definition and Properties.- 2.2
Perturbation Theory: Feynman Diagrams.- 2.3 Problems to
Chapter 2.- 3 More
Greens Functions, Equilibrium and Otherwise, and Their Applications.- 3.1
Analytic Properties of Equilibrium Greens Functions.- 3.2 Matsubara
formalism.- 3.3 Linear Response Theory.- 3.4 Nonequilibrium Greens
Functions.- 3.5 Quantum Kinetic Equation.- 3.6 Application: Electrical
Conductivity of Quantum Point Contacts.- 3.7 Method of Tunneling
Hamiltonian.- 3.8 Problems to
Chapter 3.- 4 Methods of the Many-Body Theory
in Superconductivity.- 4.1 Introduction: General Picture of the
Superconducting State.- 4.2 Instability of the Normal State.- 4.3 Pairing
(BCS) Hamiltonian.- 4.4 Greens Functions of a Superconductor: The
NambuGorkov Formalism.- 4.5 Andreev Reflection.- 4.6 Tunneling of Single
Electrons and Cooper Pairs.- 4.7 Problems to
Chapter 4.- A Landauer Formalism
for Hybrid Normal-Superconducting.- Structures.- A.1 The LandauerLambert
formula.- A.2 Giant Conductance Oscillations in Ballistic Andreev
Interferometers.- References.