Muutke küpsiste eelistusi

E-raamat: Quantum Theory of Transport Properties of Single Molecules

  • Formaat: 588 pages
  • Ilmumisaeg: 07-Nov-2024
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • Keel: eng
  • ISBN-13: 9781000091151
  • Formaat - EPUB+DRM
  • Hind: 250,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 588 pages
  • Ilmumisaeg: 07-Nov-2024
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • Keel: eng
  • ISBN-13: 9781000091151

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Having earned chemical accuracy and physical reality, quantum transport theory, which dates back to the Landauer theory in the mesoscopic physics field, is expanding its power over material science and chemistry, forming a new subject of non-equilibrium quantum transport theory for charge and heat at the nanoscale. This growing subject invites cross-disciplinary developments: for example, the local heating theory developed there was examined and applied to the self-heating problem in the field of semiconductor and nanoelectronic device physics . Considering this, a reprint book compiling key important papers into a single comprehensive volume is convenient and comprehensive. In this volume, 25 papers are collected and compiled into 4 sections. A brief introduction given in each section will help readers with various backgrounds. The book will appeal to anyone involved in charge and/or heat transport problems that are widely spread over various subjects in material science, chemistry, electrical engineering, and condensed matter physics.

Quantum Theory of Transport Properties of Single Molecules

Yoshihiro Asai is a former director of a research center at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. He joined Prof. Ken-ichi Fukuis group at Kyoto University, Japan, and was awarded a PhD in 1987 in the field of quantum chemistry. He then moved as a tenured researcher to Dr. J. Kondos group at Electrotechnical Laboratory (ETL) and started research on condensed matter physics theory, including strongly correlated electron systems, superconductivity, computational physics, and non-equilibrium transport. His research has been focused on inelastic electric currents, electron and phonon currents, local heating, and vibronic effects on current noise. Dr. Asais work contributes to the understanding of fundamental physical processes and has practical implications for technologies such as nanoelectronics, thermoelectric devices, and quantum materials.

Marius E. Bürkle joined Yoshihiro Asais group as a JSPS fellow and became a chief senior researcher at AIST. He joined Prof. Gerd Schöns group at Karlsruhe Institute of Technology and was awarded a PhD in 2011 for his thesis on Ab initio description of electron transport through nanoscale systems. His research is focused on nanoscale systems, particularly electron transport, as well as single-molecule charge transport and quantum interference. His work includes studies on heat dissipation and its relation to thermopower in single-molecule junctions, nanoscale orchestration, thermoelectric properties, and quantum transport.