Muutke küpsiste eelistusi

E-raamat: Quantum Transport: Modelling, Analysis and Asymptotics - Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 11-16, 2006

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1946
  • Ilmumisaeg: 03-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540795742
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1946
  • Ilmumisaeg: 03-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540795742

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Downscaling of semiconductor devices, which is now reaching the nanometer scale, makes it mandatory for us to understand the quantum phenomena - volvedinchargetransport.Indeed,fornanoscaledevices,thequantumnature of electrons cannot be neglected. In fact, it underlies the operation of an increasing number of devices. Unlike classical transport, the intuition of the physicistandtheengineerisbecominginsu cientforpredictingthenatureof device operation in the quantum context-the need for su ciently accurate and numerically tractable models represents an outstanding challenge in which applied mathematics can play an important role. TheCIMESession"QuantumTransport:Modelling,AnalysisandAsy- totics", which took place in Cetraro (Cosenza), Italy, from September 11 to September 16, 2006, was intended both to present an overview of up-to-date mathematical problems in this ?eld and to provide the audience with te- niques borrowed from other ?elds of application. It was attended by about 50 scientists and researchers, coming from d- ferent countries. The list of participants is included at the end of this book. The school was structured into four courses: ' * Gr' egoire Allaire (Ecole Polytechnique, Palaiseau, France) Periodic - mogeneization and E ective MassTheorems for theSchr. odinger Equation. * AntonArnold(TechnischeUniversit. at,Vienna)MathematicalProperties of Quantum Evolution Equations. * Pierre Degond (Universit' e Paul Sabatier and CNRS, Toulouse, France) Quantum Hydrodynamic and Di usion Models Derived from the Entropy Principle. * Thomas Yizhao Hou (Caltech, Los Angeles, USA) Multiscale Com- tations for Flow and Transport in Heterogeneous Media. This book contains the texts of the four series of lectures presented at the Summer School. Here follows a brief description of the subjects of these courses.
Periodic Homogenization and Effective Mass Theorems for the Schrodinger Equation
1(44)
Gregoire Allaire
Introduction
1(1)
Asymptotic Expansions in Periodic Homogenization
2(5)
Two-Scale Convergence
7(4)
Application to Homogenization
11(2)
Bloch Waves
13(6)
Schrodinger Equation in Periodic Media
19(1)
Semiclassical Analysis and WKB Ansatz
20(3)
Homogenization Without Drift
23(7)
Generalization with Drift
30(3)
Homogenized System of Equations
33(3)
Localization
36(9)
References
42(3)
Mathematical Properties of Quantum Evolution Equations
45(66)
Anton Arnold
Quantum Transport Models for Semiconductor Nano-Devices
47(12)
Quantum Waveguide with Adjustable Cavity
48(4)
Resonant Tunneling Diode
52(7)
Linear Schrodinger Equation
59(5)
Free Schrodinger Group
59(1)
Smoothing Effects and Gain of Integrability in RN
60(1)
Potentials, Inhomogeneous Equation
61(2)
Strichartz Estimates
63(1)
Schrodinger-Poisson Analysis in R3
64(6)
H1-Analysis
65(1)
L2-Analysis
66(3)
Schrodinger-Poisson Systems
69(1)
Density Matrices
70(8)
Framework, Trace Class Operators
70(1)
Macroscopic Quantities
71(3)
Time Evolution of Closed/Hamiltonian Systems
74(2)
Von Neumann-Poisson Equation in R3
76(2)
Wigner Function Models
78(12)
Wigner Functions
78(2)
Linear Wigner-Fokker-Planck: Well-Posedness
80(2)
Linear Wigner-Fokker-Planck: Large Time Behavior
82(3)
Wigner-Poisson-Fokker-Planck: Global Solutions in R3
85(5)
Open Quantum Systems in Lindblad Form
90(10)
Lindblad Form
91(5)
Quantum Fokker-Planck Equation
96(4)
Wigner Boundary Value Problems
100(11)
1D Stationary Boundary Value Problem
100(4)
Exponential Convergence to Steady State
104(2)
References
106(5)
Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle
111(58)
Pierre Degond
Samy Gallego
Florian Mehats
Christian Ringhofer
General Introduction
111(1)
Quantum Kinetic Equations: An Introduction
112(12)
Quantum Statistical Mechanics of Nonequilibrium Systems
112(5)
N-Particle Quantum System
117(3)
Quantum Methods: A Brief and Incomplete Summary
120(2)
Hydrodynamic Limits: A Review
122(2)
Quantum Hydrodynamic Models Derived from the Entropy Principle
124(20)
Quantum Setting
124(1)
QHD via Entropy Minimization
125(8)
Quantum Isothermal Euler Model
133(11)
Quantum Diffusion Models
144(18)
Quantum Energy-Transport Model
144(8)
Quantum Drift-Diffusion Model
152(10)
Summary and Conclusion
162(7)
References
166(3)
Multiscale Computations for Flow and Transport in Heterogeneous Media
169(80)
Yalchin Efendiev
Thomas Y. Hou
Introduction
170(1)
Review of Homogenization Theory
171(8)
Homogenization Theory for Elliptic Problems
171(1)
Special Case: One-Dimensional Problem
172(1)
Multiscale Asymptotic Expansions
173(2)
Justification of Formal Expansions
175(1)
Boundary Corrections
176(1)
Convection of Microstructure
176(2)
Nonlocal Memory Effect of Homogenization
178(1)
Numerical Upscaling Based on Multiscale Finite Element Methods
179(44)
Multiscale Finite Element Methods for Elliptic PDEs
181(1)
Convergence Analysis of MsFEM
182(1)
Error Estimates (h < ε)
183(2)
Error Estimates (h > ε)
185(3)
The Oversampling Technique
188(1)
Performance and Implementation Issues
189(1)
Cost and Performance
190(1)
MsFEM for Problems with Scale Separation
191(1)
Convergence and Accuracy
191(1)
Brief Overview of Mixed Finite Element and Finite Volume Element Methods
192(1)
Control Volume Multiscale Finite Element Method
192(2)
Mixed Multiscale Finite Element Methods
194(1)
Applications
195(1)
Flow in Porous Media
195(3)
Fine Scale Recovery
198(2)
Scale-Up of One-Phase Flows
200(5)
MsFEM Using Limited Global Information
205(1)
Motivation
205(5)
Modified Multiscale Finite Volume Element Method Using Limited Global Information
210(1)
Mixed Multiscale Finite Element Methods
211(1)
Numerical Results
212(3)
Galerkin Finite Element Methods with Limited Global Information
215(5)
Extensions of Galerkin Finite Element Methods with Limited Global Information
220(2)
Mixed Finite Element Methods with Limited Global Information
222(1)
Multiscale Finite Element Methods for Nonlinear Partial Differential Equations
223(14)
Multiscale Finite Volume Element Method (MsFVEM)
225(1)
Examples of Vεh
226(1)
Convergence of MsFEM for Nonlinear Partial Differential Equations
227(1)
Multiscale Finite Element Methods for Nonlinear Parabolic Equations
228(2)
Numerical Results
230(5)
Generalizations of MsFEM and Some Remarks
235(2)
Multiscale Simulations of Two-Phase Immiscible Flow in Adaptive Coordinate System
237(7)
Conclusions
244(5)
References
244(5)
List of Participants 249