Muutke küpsiste eelistusi

E-raamat: Quantum Well Infrared Photodetectors: Physics and Applications

  • Formaat: PDF+DRM
  • Sari: Springer Series in Optical Sciences 126
  • Ilmumisaeg: 18-Oct-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540363248
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Series in Optical Sciences 126
  • Ilmumisaeg: 18-Oct-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540363248
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Addressed to both students as a learning text and scientists/engineers as a reference, this book discusses the physics and applications of quantum-well infrared photodetectors (QWIPs). It is assumed that the reader has a basic background in quantum mechanics, solid-state physics, and semiconductor devices. To make this book as widely accessible as possible, the treatment and presentation of the materials is simple and straightforward. The topics for the book were chosen by the following criteria: they must be well-established and understood; and they should have been, or potentially will be, used in practical applications. The monograph discusses most aspects relevant for the field but omits, at the same time, detailed discussions of specialized topics such as the valence-band quantum wells.
Introduction
1(4)
Part I Physics
Basics of Infrared Detection
5(8)
Blackbody Radiation
5(2)
Signal, Noise, and Noise-Equivalent Power
7(3)
Detectivity and Noise-Equivalent Temperature Difference
10(3)
Semiconductor Quantum Wells and Intersubband Transitions
13(32)
Quantum Wells
13(1)
Intersubband Transitions
13(5)
Intersubband Transition: More Details
18(11)
Basic Formulae
18(3)
Calculations for a Symmetric Quantum Well
21(6)
Transfer-Matrix Method
27(2)
Corrections to the Intersubband Energy and Lineshape
29(10)
Coulomb Interaction
29(2)
Many-Particle Effects
31(3)
Further Interactions
34(2)
Band Nonparabolicity
36(3)
Intersubband Relaxation and Carrier Capture
39(6)
Electron-Phonon Interaction
40(1)
Electron-Impurity and Electron-Electron Scattering
41(4)
Photoconductive QWIP
45(38)
Dark Current
45(12)
Simple Models
45(10)
Self-Consistent and Numerical Models
55(2)
Photocurrent
57(8)
Photoconductive Gain
57(7)
Detector Responsivity
64(1)
Detector Performance
65(7)
Detector Noise
65(2)
Detectivity and Blip Condition
67(5)
Design of an Optimized Detector
72(3)
THz QWIPs
75(8)
Design Considerations
76(1)
Experimental and Discussion
77(6)
Photovoltaic QWIP
83(14)
General Concept
83(2)
The Four-Zone QWIP
85(12)
Transport Mechanism and Device Structure
85(3)
Responsivity and Dark Current
88(1)
Noise
89(3)
Detectivity
92(1)
Time Dependence
93(1)
Theoretical Performance of Low-Noise QWIPs
94(3)
Optical Coupling
97(10)
Simple Experimental Geometries
97(3)
Gratings for Focal Plane Arrays
100(4)
Strong Coupling in Waveguides, Polaritons, and Vacuum-Field Rabi Splitting
104(3)
Miscellaneous Effects
107(32)
Intersubband Absorption Saturation
107(2)
Nonlinear Transport and Optical Effects
109(14)
Extrinsic (Photoconductive) Nonlinearity
109(6)
Negative Differential Photoconductivity and Electric Field Domains
115(6)
Intrinsic Nonlinearity
121(2)
Asymmetry Caused by Dopant Segregation
123(2)
Coherent Photocurrent
125(6)
Coherent Control by Optical Fields
125(3)
Coherent Control Through Potential Offsets
128(3)
Impact Ionization and Avalanche Multiplication
131(4)
Radiation Hardness
135(4)
Related Structures and Devices
139(36)
High Absorption QWIPs
139(5)
Absorption Measurements
139(2)
Detector Characteristics
141(3)
Multicolor QWIPs
144(7)
Voltage Switched Multicolor QWIP
146(3)
Voltage Tuned Multicolor QWIP
149(2)
Interband and Intersubband Dual-band Detectors
151(10)
Using the Same Quantum Well
151(7)
Stacked QWIP and PIN
158(3)
Integrated QWIP--LED
161(2)
Quantum Dot Infrared Photodetector
163(7)
Anticipated Advantages and Current Status
165(5)
Areas for Improvement
170(1)
Single Well and Blocked Miniband QWIPs
170(2)
Transistors and Monolithic Integration
172(3)
Part II Applications
Thermal Imaging
175(28)
Signal, Noise, and Noise-Equivalent Temperature Difference
175(10)
Signal Detection
175(2)
Detector Noise
177(1)
System Noise
178(1)
Thermal Resolution
179(2)
Fixed-Pattern Noise and NETD of an Array
181(2)
Modulation Transfer Function
183(2)
QWIP Cameras
185(5)
Fabrication of QWIP FPAs
185(2)
System Integration
187(1)
Camera Performance
188(2)
MWIR/LWIR Dual-Band QWIP FPA
190(6)
Detector Concept
191(2)
Array Fabrication and FPA Layout
193(1)
Properties of Dual-Band QWIP Test Devices
194(1)
System Integration and Dual-Band QWIP FPA Performance
195(1)
Opportunities for QWIP FPAs in Thermal Imaging
196(3)
Alternative Architecture and New Functionality of QWIP FPAs
199(4)
Dynamics, Ultrafast, and Heterodyne
203(26)
Dynamic Processes in QWIPs
203(10)
Quantum Well Recharging
204(4)
Picosecond Photocurrent
208(5)
High Frequency and Heterodyne QWIPs
213(7)
Microwave Rectification
213(3)
Heterodyne Detection
216(4)
Two-Photon QWIP
220(9)
Equidistant Three-Level System for Quadratic Detection
220(3)
Autocorrelation of Subpicosecond Optical Pulses
223(2)
Externally Switchable Quadratic and Linear Response
225(4)
Conclusions and outlook
229(2)
References 231(16)
Index 247


Harald Schneider completed his PhD at the Max-Planck Institute for Solid State Research (Stuttgart, D) in 1988. In the same year he got the Otto-Hahn-Medal, awarded for the best PhD theses of the Max-Planck-Society. In 1989, he joined the Fraunhofer-Institute for Solid State Physics (Freiburg, D), where he was working on infrared optoelectronics. For the development of infrared cameras of highest thermal resolution, he and his colleagues were awarded the 2001 German Science Foundation Award (Preis des Stifterverbands). In 2005, he switched to the Forschungszentrum Rossendorf, where he is now leading the Semiconductor Spectroscopy Division. He has authored and co-authored more than 150 publications.



H. C. Liu got his PhD in applied physics from the University of Pittsburgh in 1987 as an Andrew Mellon Predoctoral Fellow. He is currently the Quantum Devices Group Leader in the Institute for Microstructural Sciences at the National Research Council of Canada. He has authored and co-authored about 250 refereed journal articles (with about 80 first or sole authored), and given 90 talks (53 invited) at international conferences. He has been elected as a Fellow of the American Physical Society, granted over a dozen patents, and awarded the Herzberg Medal from the Canadian Association of Physicists in 2000 and the Bessel Award from the Alexander von Humboldt Foundation in 2001.



Both authors were involved in QWIPs from the very beginning, including basic research, device optimization, system applications, and novel directions. Their combined work covers a significant share of QWIP research that has been conducted worldwide.