|
1 Introduction and Summary |
|
|
1 | (14) |
|
|
12 | (3) |
|
2 Standard Model and Beyond |
|
|
15 | (36) |
|
|
15 | (9) |
|
2.2 Grand Unified Theories |
|
|
24 | (7) |
|
|
31 | (9) |
|
2.3.1 Global Supersymmetry |
|
|
31 | (3) |
|
2.3.2 Local Supersymmetry, or Supergravity |
|
|
34 | (4) |
|
|
38 | (2) |
|
|
40 | (7) |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
45 | (2) |
|
|
47 | (4) |
|
|
51 | (28) |
|
|
51 | (6) |
|
|
52 | (2) |
|
|
54 | (1) |
|
3.1.3 Fixed Points and Conjugacy Class |
|
|
55 | (2) |
|
3.2 One Dimensional Orbifolds |
|
|
57 | (3) |
|
|
57 | (1) |
|
|
58 | (1) |
|
3.2.3 S1/(Z2 × Z'2) Orbifold |
|
|
59 | (1) |
|
3.3 Two Dimensional Orbifolds |
|
|
60 | (6) |
|
|
60 | (2) |
|
|
62 | (1) |
|
3.3.3 Geometry of Orbifold |
|
|
63 | (1) |
|
|
64 | (2) |
|
3.4 Classifying the Space Group |
|
|
66 | (4) |
|
|
66 | (1) |
|
3.4.2 Finding Lattices for a Given Twist |
|
|
67 | (1) |
|
|
67 | (2) |
|
|
69 | (1) |
|
3.5 Six Dimensional Orbifold T6/ZN |
|
|
70 | (8) |
|
3.5.1 Supersymmetry Constraint |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (1) |
|
3.5.4 Homology, Number of Fixed Points |
|
|
75 | (3) |
|
|
78 | (1) |
|
|
79 | (14) |
|
4.1 Spinors in General Dimensions |
|
|
79 | (8) |
|
4.1.1 Rotation and Vector |
|
|
79 | (1) |
|
4.1.2 Spinors in General Dimensions |
|
|
80 | (7) |
|
4.2 Supersymmetry Multiplets |
|
|
87 | (4) |
|
|
87 | (1) |
|
|
88 | (3) |
|
|
91 | (2) |
|
5 Field Theoretic Orbifolds |
|
|
93 | (36) |
|
|
93 | (15) |
|
|
94 | (4) |
|
|
98 | (4) |
|
|
102 | (4) |
|
|
106 | (2) |
|
|
108 | (13) |
|
5.2.1 SU(5) GUT in Five Dimension |
|
|
108 | (5) |
|
5.2.2 SO(10) GUT in Six Dimension |
|
|
113 | (8) |
|
5.3 Local Anomalies at Fixed Points |
|
|
121 | (6) |
|
|
127 | (2) |
|
6 Quantization of Strings |
|
|
129 | (54) |
|
|
129 | (16) |
|
6.1.1 Action and Its Invariance Properties |
|
|
130 | (6) |
|
6.1.2 Conformal Symmetry and Virasoro Algebra |
|
|
136 | (3) |
|
|
139 | (3) |
|
6.1.4 Partition Function and Modular Invariance |
|
|
142 | (3) |
|
|
145 | (15) |
|
|
146 | (4) |
|
|
150 | (3) |
|
6.2.3 Spectrum and GSO Projection |
|
|
153 | (6) |
|
6.2.4 Superstring Theories |
|
|
159 | (1) |
|
|
160 | (15) |
|
6.3.1 Non-Abelian Gauge Symmetry |
|
|
160 | (3) |
|
6.3.2 Compactifying Several Dimensions |
|
|
163 | (2) |
|
|
165 | (4) |
|
6.3.4 Bosonization and Fermionization |
|
|
169 | (6) |
|
|
175 | (5) |
|
6.4.1 Charged Open Strings |
|
|
175 | (1) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (2) |
|
|
180 | (3) |
|
|
183 | (32) |
|
|
183 | (2) |
|
7.2 Mode Expansion and Quantization |
|
|
185 | (7) |
|
7.2.1 Bosonic Left and Right Movers |
|
|
185 | (3) |
|
7.2.2 Fermionic Right Movers |
|
|
188 | (2) |
|
|
190 | (2) |
|
7.3 Embedding Gauge Group |
|
|
192 | (5) |
|
|
192 | (2) |
|
|
194 | (3) |
|
7.4 The Standard Embedding |
|
|
197 | (7) |
|
|
197 | (4) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (8) |
|
7.5.1 Shifts Associated with Translations |
|
|
204 | (3) |
|
7.5.2 The Combination: Local Twists at the Fixed Points |
|
|
207 | (1) |
|
7.5.3 Projection Conditions in the Bulk |
|
|
208 | (1) |
|
|
209 | (3) |
|
|
212 | (3) |
|
|
215 | (22) |
|
8.1 The String Hilbert Space |
|
|
215 | (3) |
|
8.1.1 Considering Modular Invariance |
|
|
215 | (3) |
|
8.2 Building Blocks of Partition Functions |
|
|
218 | (9) |
|
|
218 | (7) |
|
|
225 | (2) |
|
8.2.3 Right-Moving Fermions |
|
|
227 | (1) |
|
|
227 | (9) |
|
8.3.1 The Full Partition Function of Heterotic String |
|
|
227 | (3) |
|
8.3.2 Generalized GSO Projections |
|
|
230 | (1) |
|
8.3.3 Partition Function of the Z3 Orbifold |
|
|
231 | (5) |
|
|
236 | (1) |
|
|
237 | (26) |
|
9.1 The Geometry of Non-prime Orbifold |
|
|
237 | (8) |
|
|
237 | (8) |
|
9.2 Strings on Non-prime ZN Orbifolds |
|
|
245 | (6) |
|
9.2.1 Eigenstates of Point Group Element |
|
|
245 | (2) |
|
9.2.2 The Spectrum of T6/Z4 Orbifold Model |
|
|
247 | (4) |
|
9.3 Strings on ZN × ZM Orbifolds |
|
|
251 | (4) |
|
9.3.1 Combination of Twists |
|
|
251 | (1) |
|
9.3.2 Partition Function and Discrete Torsion |
|
|
252 | (2) |
|
|
254 | (1) |
|
9.4 Wilson Lines on General Orbifolds |
|
|
255 | (5) |
|
9.4.1 Constraints on Wilson Lines |
|
|
255 | (3) |
|
|
258 | (1) |
|
9.4.3 Generalized GSO Projection |
|
|
259 | (1) |
|
|
260 | (3) |
|
10 Interactions on Orbifolds |
|
|
263 | (40) |
|
10.1 Conformal Field Theory on Orbifolds |
|
|
263 | (8) |
|
10.1.1 Conformal Field Theory |
|
|
264 | (3) |
|
10.1.2 Vertex Operators for Interactions |
|
|
267 | (4) |
|
|
271 | (6) |
|
10.2.1 Space Group Invariance |
|
|
272 | (3) |
|
10.2.2 Lorentz Invariance |
|
|
275 | (2) |
|
10.3 Three-Point Correlation Function |
|
|
277 | (6) |
|
10.3.1 The Classical Part |
|
|
278 | (5) |
|
10.4 Four-Point Correlation Function |
|
|
283 | (8) |
|
10.4.1 The Classical Part |
|
|
283 | (2) |
|
|
285 | (3) |
|
10.4.3 Factorization and Normalization |
|
|
288 | (1) |
|
|
289 | (2) |
|
10.5 Phenomenology of Yukawa Couplings |
|
|
291 | (10) |
|
10.5.1 Couplings in Z3 Orbifold |
|
|
291 | (4) |
|
10.5.2 Yukawa Couplings in ZN Orbifolds |
|
|
295 | (3) |
|
10.5.3 Toward Realistic Yukawa Couplings |
|
|
298 | (3) |
|
|
301 | (2) |
|
|
303 | (36) |
|
11.1 Dimensional Reduction |
|
|
304 | (5) |
|
11.1.1 Dimeansional Reduction |
|
|
304 | (5) |
|
|
309 | (7) |
|
|
310 | (1) |
|
11.2.2 Narain Compactification |
|
|
311 | (2) |
|
|
313 | (2) |
|
11.2.4 Duality Between Two Heterotic String Theories |
|
|
315 | (1) |
|
11.3 Supersymmetric Action and Twisted Fields |
|
|
316 | (15) |
|
|
316 | (7) |
|
|
323 | (1) |
|
11.3.3 Gauge Kinetic Function |
|
|
324 | (6) |
|
11.3.4 No-scale Structure |
|
|
330 | (1) |
|
|
331 | (1) |
|
11.5 Anomaly Cancellation |
|
|
331 | (5) |
|
11.5.1 Anomaly Polynomial |
|
|
332 | (2) |
|
|
334 | (2) |
|
|
336 | (3) |
|
|
339 | (42) |
|
|
339 | (8) |
|
|
339 | (6) |
|
12.1.2 Affine Lie Algebra |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
347 | (5) |
|
12.2.1 Highest Weight Representations |
|
|
347 | (1) |
|
12.2.2 Integrability and No-adjoint Theorem |
|
|
348 | (1) |
|
12.2.3 Mass and Conformal Weight |
|
|
349 | (3) |
|
|
352 | (5) |
|
|
352 | (3) |
|
|
355 | (2) |
|
12.4 General Action on Group Lattice |
|
|
357 | (6) |
|
12.4.1 Point Group Embedding |
|
|
357 | (5) |
|
12.4.2 Reducing the Rank by Orbifolding |
|
|
362 | (1) |
|
|
363 | (5) |
|
12.5.1 Extending Group Lattice |
|
|
363 | (2) |
|
12.5.2 Symmetrizing Lattice |
|
|
365 | (3) |
|
|
368 | (10) |
|
12.6.1 Classification of the Gauge Group |
|
|
369 | (3) |
|
|
372 | (3) |
|
12.6.3 Complete Spectrum of SO(32) String |
|
|
375 | (1) |
|
12.6.4 Higher-Level Algebra |
|
|
376 | (2) |
|
|
378 | (3) |
|
13 Orbifold Phenomenology |
|
|
381 | (28) |
|
|
381 | (2) |
|
|
383 | (3) |
|
13.2.1 Gauge Coupling Unification |
|
|
383 | (1) |
|
13.2.2 Standard-Like Models |
|
|
384 | (2) |
|
|
386 | (6) |
|
|
386 | (1) |
|
|
387 | (2) |
|
|
389 | (3) |
|
|
392 | (3) |
|
13.4.1 The Number of Fixed Points |
|
|
392 | (1) |
|
13.4.2 Number of Internal Dimensions |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
395 | (5) |
|
13.5.1 Global and Discrete Symmetries |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
397 | (3) |
|
13.6 "Invisible" Axion from String |
|
|
400 | (3) |
|
|
400 | (1) |
|
13.6.2 Domain Wall Number of "Invisible" Axion |
|
|
401 | (1) |
|
13.6.3 String Perspective |
|
|
401 | (2) |
|
13.7 Phenomenology on Electroweak |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (4) |
|
|
409 | (22) |
|
14.1 Requirements for GUTs |
|
|
409 | (1) |
|
14.2 GUTs from Z12--1 Orbifold |
|
|
410 | (19) |
|
14.2.1 Without a Wilson Line |
|
|
411 | (7) |
|
14.2.2 A Model with a Wilson Line |
|
|
418 | (7) |
|
14.2.3 Doublet--Triplet Splitting |
|
|
425 | (1) |
|
|
426 | (1) |
|
14.2.5 U(1)R Identification |
|
|
426 | (1) |
|
14.2.6 Discrete Symmetry Z4R |
|
|
427 | (2) |
|
14.2.7 A Z6 Orbifold Model |
|
|
429 | (1) |
|
14.2.8 Other Unified Models |
|
|
429 | (1) |
|
|
429 | (2) |
|
15 Smooth Compactification |
|
|
431 | (44) |
|
15.1 Calabi--Yau Manifold |
|
|
431 | (8) |
|
15.1.1 Geometry Breaks Supersymmetry |
|
|
432 | (1) |
|
|
433 | (2) |
|
|
435 | (4) |
|
|
439 | (3) |
|
|
439 | (2) |
|
15.2.2 Number of Generations |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
442 | (8) |
|
15.3.1 Background Gauge Field |
|
|
443 | (1) |
|
|
444 | (2) |
|
|
446 | (4) |
|
15.4 Relation to Orbifold |
|
|
450 | (2) |
|
15.5 Algebraic Description |
|
|
452 | (11) |
|
15.5.1 A, D, E Singularity |
|
|
453 | (1) |
|
|
453 | (3) |
|
|
456 | (1) |
|
|
457 | (6) |
|
15.6 Dynamics of the Geometry |
|
|
463 | (2) |
|
15.7 Non-perturbative Vacua |
|
|
465 | (8) |
|
15.7.1 Instanton Background |
|
|
466 | (3) |
|
15.7.2 Non-perturbative String Vacua |
|
|
469 | (4) |
|
|
473 | (2) |
|
|
475 | (24) |
|
16.1 Data on Flavor Physics |
|
|
478 | (4) |
|
|
478 | (1) |
|
16.1.2 Neutrino Oscillation and PMNS Matrix |
|
|
479 | (3) |
|
16.2 Theories on Flavor Physics in Field Theory |
|
|
482 | (10) |
|
16.2.1 Electroweak CP Violation |
|
|
484 | (3) |
|
16.2.2 B and L Generation |
|
|
487 | (1) |
|
16.2.3 Discrete Symmetries |
|
|
488 | (3) |
|
16.2.4 Continuous Symmetries |
|
|
491 | (1) |
|
16.3 Flavors from String Compactification |
|
|
492 | (2) |
|
16.4 CP Violation from String |
|
|
494 | (1) |
|
|
494 | (5) |
|
|
499 | (24) |
|
17.1 Fermionic Construction |
|
|
499 | (7) |
|
|
500 | (2) |
|
|
502 | (4) |
|
|
506 | (5) |
|
|
510 | (1) |
|
|
511 | (3) |
|
|
514 | (7) |
|
|
518 | (3) |
|
|
521 | (2) |
A Useful Tables for Model Building |
|
523 | (6) |
Index |
|
529 | |