Muutke küpsiste eelistusi

E-raamat: Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Berti and Montalto prove the existence and linear stability of small amplitude time quasi-periodic standing wave solutions (that is, periodic and even in the space variable x) of a two-dimensional ocean with infinite depth under the action of gravity and surface tension. They obtain such an existence result for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure. They cover the functional setting, tranversality properties of degenerate KAM theory, approximate inverse, the linearized operator in the normal directions, the almost digitalization and invertibility of Lw, and the Nash-Moser iteration. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)
Chapter 1 Introduction and main result
1(20)
1.1 Ideas of proof
9(8)
1.2 Notation
17(4)
Chapter 2 Functional setting
21(30)
2.1 Pseudo-differential operators and norms
24(9)
2.2 Dko-tame and Dko-modulo-tame operators
33(9)
2.3 Integral operators and Hilbert transform
42(3)
2.4 Dirichlet-Neumann operator
45(6)
Chapter 3 Transversality properties of degenerate KAM theory
51(6)
Chapter 4 Nash-Moser theorem and measure estimates
57(8)
4.1 Nash-Moser Theoreme de conjugaison hypothetique
58(2)
4.2 Measure estimates
60(5)
Chapter 5 Approximate inverse
65(14)
5.1 Estimates on the perturbation P
65(1)
5.2 Almost approximate inverse
66(13)
Chapter 6 The linearized operator in the normal directions
79(38)
6.1 Linearized good unknown of Alinhac
81(1)
6.2 Symmetrization and space reduction of the highest order
82(5)
6.3 Complex variables
87(1)
6.4 Time-reduction of the highest order
88(2)
6.5 Block-decoupling up to smoothing remainders
90(6)
6.6 Elimination of order Δx: Egorov method
96(13)
6.7 Space reduction of the order Δx
109(3)
6.8 Conclusion: partial reduction of &Pound;ω
112(5)
Chapter 7 Almost diagonalization and invertibility of &Pound;ω
117(16)
7.1 Proof of Theorem 7.3
122(9)
7.2 Alrnost-invertibility of &Pound;ω
131(2)
Chapter 8 The Nash-Moser iteration
133(8)
8.1 Proof of Theorem 4.1
138(3)
Appendix A Tame estimates for the flow of pseudo-PDEs 141(28)
Bibliography 169
Massimiliano Berti, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy

Riccardo Montalto, University of Zurich, Switzerland