Muutke küpsiste eelistusi

E-raamat: Quaternions, Clifford Algebras and Relativistic Physics

  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Jun-2007
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783764377915
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Jun-2007
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783764377915
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. The book proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus.

The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus.
Introduction 1(2)
Quaternions
3(16)
Group structure
3(1)
Finite groups of order n ≤ 8
4(3)
Quaternion group
7(1)
Quaternion algebra H
8(7)
Definitions
8(3)
Polar form
11(1)
Square root and nth root
11(3)
Other functions and representations of quaternions
14(1)
Classical vector calculus
15(2)
Scalar product and vector product
15(1)
Triple scalar and double vector products
16(1)
Exercises
17(2)
Rotation groups SO (4) and SO (3)
19(18)
Orthogonal groups O(4) and SO(4)
19(3)
Orthogonal groups O(3) and SO(3)
22(2)
Crystallographic groups
24(4)
Double cyclic groups Cn (order N = 2n)
24(1)
Double dihedral groups Dn (N = 4n)
24(1)
Double tetrahedral group (N = 24)
25(1)
Double octahedral group (N = 48)
26(1)
Double icosahedral group (N = 120)
27(1)
Infinitesimal transformations of SO(4)
28(4)
Symmetries and invariants: Kepler's problem
32(2)
Exercises
34(3)
Complex quaternions
37(20)
Algebra of complex quaternions H(C)
37(1)
Lorentz groups O(1,3) and SO(1,3)
38(3)
Metric
38(1)
Plane symmetry
38(1)
Groups O(1,3) and SO(1,3)
39(2)
Orthochronous, proper Lorentz group
41(3)
Properties
41(2)
Infinitesimal transformations of SO(1,3)
43(1)
Four-vectors and multivectors in H(C)
44(3)
Relativistic kinematics via H(C)
47(3)
Special Lorentz transformation
47(1)
General pure Lorentz transformation
48(1)
Composition of velocities
48(2)
Maxwell's equations
50(2)
Group of conformal transformations
52(2)
Exercises
54(3)
Clifford algebra
57(18)
Clifford algebra
57(2)
Definitions
57(1)
Clifford algebra H H over R
58(1)
Multivector calculus within H H
59(5)
Exterior and interior products with a vector
59(2)
Products of two multivectors
61(1)
General formulas
62(2)
Classical vector calculus
64(1)
Multivector geometry
64(5)
Analytic geometry
64(2)
Orthogonal projections
66(3)
Differential operators
69(3)
Definitions
69(1)
Infinitesimal elements of curves, surfaces and hypersurfaces
69(2)
General theorems
71(1)
Exercises
72(3)
Symmetry groups
75(16)
Pseudo-orthogonal groups O(1, 3) and SO(1, 3)
75(3)
Metric
75(1)
Symmetry with respect to a hyperplane
75(2)
Pseudo-orthogonal groups O(1, 3) and SO(1, 3)
77(1)
Proper orthochronous Lorentz group
78(4)
Rotation group SO(3)
78(1)
Pure Lorentz transformation
79(2)
General Lorentz transformation
81(1)
Group of conformal transformations
82(3)
Definitions
82(1)
Properties of conformal transformations
83(1)
Transformation of multivectors
84(1)
Dirac algebra
85(3)
Dirac equation
85(1)
Unitary and symplectic unitary groups
86(2)
Exercises
88(3)
Special relativity
91(14)
Lorentz transformation
91(3)
Special Lorentz transformation
91(1)
Physical consequences
92(2)
General Lorentz transformation
94(1)
Relativistic kinematics
94(5)
Four-vectors
94(3)
Addition of velocitics
97(2)
Relativistic dynamics of a point mass
99(4)
Four-momentum
99(1)
Four-force
100(3)
Exercises
103(2)
Classical electromagnetism
105(22)
Electromagnetic quantities
105(5)
Four-current density and four-potential
105(2)
Electromagnetic field bivector
107(3)
Maxwell's equations
110(8)
Differential formulation
110(5)
Integral formulation
115(1)
Lorentz force
116(2)
Electromagnetic waves
118(3)
Electromagnetic waves in vacuum
118(1)
Electromagnetic waves in a conductor
119(1)
Electromagnetic waves in a perfect medium
120(1)
Relativistic optics
121(4)
Fizeau experiment (1851)
121(2)
Doppler effect
123(1)
Aberration of distant stars
124(1)
Exercises
125(2)
General relativity
127(8)
Riemannian space
127(1)
Einstein's equations
128(1)
Equation of motion
129(1)
Applications
130(5)
Schwarzschild metric
130(3)
Linear approximation
133(2)
Conclusion 135(2)
Solutions 137(16)
Formulary: multivector products within H(C) 153(4)
Formulary: multivector products within H H (over R) 157(4)
Formulary: four-nabla operator within H H (over R) 161(2)
Work-sheet: H(C) (Mathematica) 163(2)
Work-sheet H H over (Mathematica) 165(2)
Work-sheet: matrices M2(H) (Mathematica) 167(2)
Clifford algebras: isomorphisms 169(2)
Clifford algebras: synoptic table 171(2)
Bibliography 173(4)
Index 177