Muutke küpsiste eelistusi

E-raamat: Quiver Representations and Quiver Varieties

  • Formaat - PDF+DRM
  • Hind: 118,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of KacMoody Lie algebras.

The first part of the book is devoted to the classical theory of quivers of finite type. Here the exposition is mostly self-contained and all important proofs are presented in detail. The second part contains the more recent topics of quiver theory that are related to quivers of infinite type: Coxeter functor, tame and wild quivers, McKay correspondence, and representations of Euclidean quivers. In the third part, topics related to geometric aspects of quiver theory are discussed, such as quiver varieties, Hilbert schemes, and the geometric realization of KacMoody algebras. Here some of the more technical proofs are omitted; instead only the statements and some ideas of the proofs are given, and the reader is referred to original papers for details. The exposition in the book requires only a basic knowledge of algebraic geometry, differential geometry, and the theory of Lie groups and Lie algebras. Some sections use the language of derived categories; however, the use of this language is reduced to a minimum. The many examples make the book accessible to graduate students who want to learn about quivers, their representations, and their relations to algebraic geometry and Lie algebras.

Arvustused

The book should serve as a valuable source for readers who want to understand various levels of deep connections between quiver representations, Lie theory, quantum groups, and geometric representation theory...The beautiful results discussed in the present book touch on several mathematical areas, therefore, the inclusion of background material and several examples make it convenient to learn the subject." - Mátyás Domokos, Mathematical Reviews

"With an adequate background in Lie theory and algebraic geometry, the book is accessible to an interested reader... it engages the reader to fill in some arguments or to look for a result in the references. As such, the book can be used for a topics course on its subjects." - Felipe Zaldivar, MAA Reviews

"...a concise guide to representation theory of quiver representations for beginner and advanced researchers." - Justyna Kosakowska, Zentralblatt Math

Preface xi
Part 1 Dynkin Quivers
Chapter 1 Basic Theory
3(20)
§1.1 Basic definitions
3(4)
§1.2 Path algebra; simple and indecomposable representations
7(4)
§1.3 K-group and dimension
11(1)
§1.4 Projective modules and the standard resolution
11(4)
§1.5 Euler form
15(1)
§1.6 Dynkin and Euclidean graphs
16(4)
§1.7 Root lattice and Weyl group
20(3)
Chapter 2 Geometry of Orbits
23(8)
§2.1 Representation space
23(1)
§2.2 Properties of orbits
24(2)
§2.3 Closed orbits
26(5)
Chapter 3 Gabriel's Theorem
31(16)
§3.1 Quivers of finite type
31(1)
§3.2 Reflection functors
32(6)
§3.3 Dynkin quivers
38(3)
§3.4 Coxeter element
41(2)
§3.5 Longest element and ordering of positive roots
43(4)
Chapter 4 Hall Algebras
47(22)
§4.1 Definition of Hall algebra
47(5)
§4.2 Serre relations and Ringel's theorem
52(4)
§4.3 PBW basis
56(5)
§4.4 Hall algebra of constructible functions
61(5)
§4.5 Finite fields vs. complex numbers
66(3)
Chapter 5 Double Quivers
69(14)
§5.1 The double quiver
69(1)
§5.2 Preprojective algebra
70(2)
§5.3 Varieties A(v)
72(3)
§5.4 Composition algebra of the double quiver
75(8)
Part 2 Quivers of Infinite Type
Chapter 6 Coxeter Functor and Preprojective Representations
83(20)
§6.1 Coxeter functor
84(2)
§6.2 Preprojective and preinjective representations
86(2)
§6.3 Auslander--Reiten quiver: Combinatorics
88(4)
§6.4 Auslander--Reiten quiver: Representation theory
92(4)
§6.5 Preprojective algebra and Auslander--Reiten quiver
96(7)
Chapter 7 Tame and Wild Quivers
103(30)
§7.1 Tame-wild dichotomy
103(2)
§7.2 Representations of the cyclic quiver
105(1)
§7.3 Affine root systems
106(1)
§7.4 Affine Coxeter element
107(5)
§7.5 Preprojective, preinjective, and regular representations
112(1)
§7.6 Category of regular representations
113(5)
§7.7 Representations of the Kronecker quiver
118(3)
§7.8 Classification of regular representations
121(5)
§7.9 Euclidean quivers are tame
126(1)
§7.10 Non-Euclidean quivers are wild
127(2)
§7.11 Kac's theorem
129(4)
Chapter 8 McKay Correspondence and Representations of Euclidean Quivers
133(26)
§8.1 Finite subgroups in SU(2) and regular polyhedra
133(2)
§8.2 ADE classification of finite subgroups
135(6)
§8.3 McKay correspondence
141(5)
§8.4 Geometric construction of representations of Euclidean quivers
146(13)
Part 3 Quiver Varieties
Chapter 9 Hamiltonian Reduction and Geometric Invariant Theory
159(32)
§9.1 Quotient spaces in differential geometry
159(1)
§9.2 Overview of geometric invariant theory
160(3)
§9.3 Relative invariants
163(5)
§9.4 Regular points and resolution of singularities
168(3)
§9.5 Basic definitions of symplectic geometry
171(3)
§9.6 Hamiltonian actions and moment map
174(3)
§9.7 Hamiltonian reduction
177(3)
§9.8 Symplectic resolution of singularities and Springer resolution
180(2)
§9.9 Kahler quotients
182(4)
§9.10 Hyperkahler quotients
186(5)
Chapter 10 Quiver Varieties
191(34)
§10.1 GIT quotients for quiver representations
191(4)
§10.2 GIT moduli spaces for double quivers
195(5)
§10.3 Framed representations
200(4)
§10.4 Framed representations of double quivers
204(2)
§10.5 Stability conditions
206(4)
§10.6 Quiver varieties as symplectic resolutions
210(2)
§10.7 Example: Type A quivers and flag varieties
212(4)
§10.8 Hyperkahler construction of quiver varieties
216(3)
§10.9 Cx action and exceptional fiber
219(6)
Chapter 11 Jordan Quiver and Hilbert Schemes
225(16)
§11.1 Hilbert schemes
225(2)
§11.2 Quiver varieties for the Jordan quiver
227(3)
§11.3 Moduli space of torsion free sheaves
230(5)
§11.4 Anti-self-dual connections
235(3)
§11.5 Instantons on R4 and ADHM construction
238(3)
Chapter 12 Kleinian Singularities and Geometric McKay Correspondence
241(18)
§12.1 Kleinian singularities
241(2)
§12.2 Resolution of Kleinian singularities via Hilbert schemes
243(2)
§12.3 Quiver varieties as resolutions of Kleinian singularities
245(3)
§12.4 Exceptional fiber and geometric McKay correspondence
248(5)
§12.5 Instantons on ALE spaces
253(6)
Chapter 13 Geometric Realization of Kac-Moody Lie Algebras
259(26)
§13.1 Borel--Moore homology
259(2)
§13.2 Convolution algebras
261(3)
§13.3 Steinberg varieties
264(2)
§13.4 Geometric realization of Kac--Moody Lie algebras
266(7)
Appendix A Kac--Moody Algebras and Weyl Groups
273(1)
§A.1 Cartan matrices and root lattices
273(1)
§A.2 Weight lattice
274(1)
§A.3 Bilinear form and classification of Cartan matrices
275(1)
§A.4 Weyl group
276(1)
§A.5 Kac--Moody algebra
277(1)
§A.6 Root system
278(2)
§A.7 Reduced expressions
280(1)
§A.8 Universal enveloping algebra
281(1)
§A.9 Representations of Kac-Moody algebras
282(3)
Bibliography 285(8)
Index 293
Alexander Krillov stony Brook University, NY