Muutke küpsiste eelistusi

E-raamat: Radar RF Circuit Design, Second Edition

  • Formaat: 340 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818999
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 340 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818999
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This new edition of a previous bestseller gives you practical techniques for optimizing RF and microwave circuits for applications in radar systems design, with an emphasis on current and emerging technologies. Completely updated with new material, the book shows you how to design RF components for radar systems and how to choose appropriate materials and packaging methods. It takes you through classic techniques, to the state of the art, and finally to emerging technologies. You will learn:













How to design high-frequency circuits for use in radar applications How to integrate components while avoiding higher-level assembly issues and troubleshooting problems on the measurement bench How to properly simulate, build, assemble, and test high-frequency circuits How to debug issues with hardware on the bench How to connect microwave theory to practical circuit design









Theory and practical information are provided while addressing topics ranging from heat removal to digital circuit integration. The book serves as a teaching aid for classic techniques that are still relevant today. It also demonstrates how these techniques are serving as the foundation for technologies to come. You will be equipped to consider future needs and emerging enabling technologies and confidently think (and design) outside the box to ensure future needs are met. The book also shows you how to incorporate modern design techniques often overlooked or underused, and will help you to better understand the capabilities and limitations of today's technology and the emerging technologies that are on the horizon to mitigate those limitations.





This is a must-have resource for system-level radar designers who want to up their game in RF/microwave component design. It is also a great tool for RF/microwave engineers tasked or interested in designing components for radar systems. Students and new designers of radar components will also benefit and be well prepared to start designing immediately.
Preface xvii
Acknowledgments xviii
1 Crossing the Chasm from System to Component Level 1(18)
1.1 Basic Radar Systems Overview
2(7)
1.1.1 Radar Transmitters
3(1)
1.1.2 Radar Receivers
3(1)
1.1.3 Fundamental Equations
4(3)
1.1.4 Requirements on Components
7(1)
1.1.5 Radar Applications
8(1)
1.2 Introduction to Microwave Components
9(5)
1.2.1 Fundamental Equations
9(2)
1.2.2 Essential Components
11(3)
1.3 Traveling-Wave Tube Amplifiers Versus Solid-State Amplifiers
14(1)
1.4 "How" Components Are Connected Matters
14(1)
1.5 Anti-tamper Approaches
15(1)
Exercises
16(1)
References
16(1)
Selected Bibliography
17(2)
2 Introduction to Microwave Design 19(44)
2.1 Scattering Matrix
20(2)
2.2 Matching Networks
22(11)
2.2.1 Quantifying Mismatch
22(3)
2.2.2 Graphically Based Circuits
25(7)
2.2.3 Distributed Matching Networks
32(1)
2.3 Methods of Propagation
33(22)
2.3.1 Wave Modes
34(2)
2.3.2 Coaxial Cables
36(1)
2.3.3 Microstrip
37(8)
2.3.4 Stripline
45(5)
2.3.5 Coplanar Waveguide
50(3)
2.3.6 Waveguide
53(2)
2.3.7 Discontinuities
55(1)
2.4 Material Selection
55(6)
2.4.1 Semiconductors
56(1)
2.4.2 Metals
56(1)
2.4.3 Ceramics
57(1)
2.4.4 Polymers
57(1)
2.4.5 Substrates
58(1)
2.4.6 New and Emerging Technologies
59(2)
Exercises
61(1)
References
62(1)
3 Component Modeling 63(30)
3.1 Passive Modeling
64(6)
3.1.1 Capacitor
64(1)
3.1.2 Inductor
65(3)
3.1.3 Resistor
68(1)
3.1.4 Resonators
68(2)
3.2 Footprint Modeling
70(8)
3.3 Transistor Modeling
70(1)
3.3.1 Semiconductor Background
71(1)
3.3.2 Basic Transistor Theory Review
72(5)
3.3.3 Transistor Imperfections
77(1)
3.4 Custom Models
78(9)
3.5 Measurement Techniques
87(4)
3.5.1 Small-Signal Measurement
87(2)
3.5.2 Noise Measurement
89(1)
3.5.3 Large-Signal Measurements
90(1)
3.5.4 Load-Pull Measurement
90(1)
Exercises
91(1)
References
92(1)
Selected Bibliography
92(1)
4 Power Amplifier 93(58)
4.1 Amplifier Basics
93(12)
4.1.1 Class A
96(2)
4.1.2 Class B
98(2)
4.1.3 Class AB
100(1)
4.1.4 Class C
101(1)
4.1.5 Harmonically Matched Classes
102(2)
4.1.6 Do Classes Really Matter?
104(1)
4.2 Design Strategies and Practices
105(13)
4.2.1 Stability
105(3)
4.2.2 Power and Gain
108(2)
4.2.3 Efficiency
110(1)
4.2.4 Gain Flattening
111(1)
4.2.5 VSWR
112(2)
4.2.6 Conjugate Matching
114(1)
4.2.7 DC Bias Filtering
115(1)
4.2.8 Multistage Amplifiers
116(2)
4.3 Broadband Amplifiers
118(7)
4.3.1 Multisection Matching
119(2)
4.3.2 Balanced Amplifier
121(3)
4.3.3 Push-Pull Amplifier
124(1)
4.3.4 Distributed Amplifiers
124(1)
4.4 Balancing Linearity and Efficiency
125(8)
4.4.1 Explanation of Linearity
125(4)
4.4.2 Doherty
129(2)
4.4.3 Other Linearization Techniques
131(2)
4.5 Multiphysics Concerns
133(12)
4.5.1 Thermal Considerations
133(8)
4.5.2 Mechanical Considerations
141(4)
4.6 LOs
145(1)
4.7 Tubes, Solid-State, and Where They Overlap
146(1)
Exercises
147(1)
References
148(1)
Selected Bibliography
149(2)
5 LNAs 151(22)
5.1 Explanation of Noise
152(6)
5.1.1 Thermal Noise
154(2)
5.1.2 Shot Noise
156(1)
5.1.3 Flicker Noise
156(1)
5.1.4 Noise Terminology
157(1)
5.2 Transistor Noise Modeling
158(1)
5.3 Design Strategies and Practices
159(7)
5.3.1 Understanding Noise Circles
160(2)
5.3.2 LNA Design
162(1)
5.3.3 Self-Bias Scheme
163(1)
5.3.4 Gain Equalizers
164(2)
5.3.5 Resistor Component Selection
166(1)
5.4 High Dynamic Range
166(3)
5.5 Cryogenic Operation
169(1)
5.6 Limiter Elimination
170(1)
Exercises
171(1)
References
171(1)
Selected Bibliography
172(1)
6 Passive Circuitry 173(40)
6.1 Limiting Factors and Ways to Mitigate
174(7)
6.1.1 Lumped Elements
174(1)
6.1.2 Bode-Fano Limit
175(2)
6.1.3 Discontinuities
177(4)
6.2 Couplers
181(3)
6.3 Isolators and Circulators
184(1)
6.4 Switches
185(5)
6.5 Phase Shifters
190(1)
6.6 Attenuators
191(2)
6.7 Filters/Diplexers
193(3)
6.8 Splitters/Combiners
196(5)
6.9 Baluns
201(3)
6.10 Mixers
204(4)
6.10.1 Unbalanced or Single-Ended Mixer
205(1)
6.10.2 Single-Balanced Mixer
206(1)
6.10.3 Double-Balanced Mixer
206(1)
6.10.4 Single-Sideband or Image-Rejection Mixer
207(1)
6.10.5 IQ Mixer
208(1)
6.11 Antennas
208(1)
6.12 Current Density Analysis
209(2)
Exercises
211(1)
References
211(1)
Selected Bibliography
212(1)
7 Microwave Integrated Circuits 213(38)
7.1 Component Integration
214(12)
7.1.1 MMIC
214(1)
7.1.2 System-on-Chip
215(1)
7.1.3 System-in-Package
216(1)
7.1.4 Hybrid
217(1)
7.1.5 Multichip Modules
218(2)
7.1.6 Packaging Options
220(3)
7.1.7 Substrate Stack-ups
223(1)
7.1.8 Future Proofing Through Packaging
224(2)
7.2 Packaging Model
226(1)
7.3 Designing for U.S. Military Standards
226(8)
7.3.1 Robustness
228(2)
7.3.2 Operating Stability
230(1)
7.3.3 Environmental Considerations
230(3)
7.3.4 Electrical Considerations
233(1)
7.3.5 Mechanical Considerations
234(1)
7.4 Designing for Pulsed Radar
234(3)
7.4.1 Radar Terminology
234(1)
7.4.2 Component Design
235(2)
7.5 Taking Advantage of Simulators
237(5)
7.5.1 Passives
238(2)
7.5.2 Actives
240(1)
7.5.3 Full Electromagnetic Simulation
240(1)
7.5.4 Manufacturing Assessment
241(1)
7.6 Manufacturing Practices
242(6)
7.6.1 Manufacturing Essentials
243(1)
7.6.2 Engineering Practices for High Yield
244(2)
7.6.3 Designing for MMIC-Level Cost Reduction
246(1)
7.6.4 Designing for Module-Level Cost Reduction
247(1)
Exercises
248(1)
References
249(2)
8 Transmit/Receive Module Integration 251(38)
8.1 Integration Techniques
252(6)
8.1.1 Physical Transitions
252(2)
8.1.2 Wire and Ribbon Bonding
254(1)
8.1.3 Proper Grounding
255(1)
8.1.4 Achieving Compact Size
255(2)
8.1.5 Component Placement
257(1)
8.2 Preventing Oscillation
258(2)
8.2.1 Even-Mode Oscillation
258(1)
8.2.2 Odd-Mode Oscillation
259(1)
8.2.3 Spurious Oscillation
259(1)
8.2.4 Ground Loops
259(1)
8.3 Preventing Crosstalk and Leakage
260(8)
8.3.1 Electric Coupling
262(1)
8.3.2 Magnetic Coupling
263(2)
8.3.3 Shielding
265(2)
8.3.4 Via Fence
267(1)
8.4 Thermal Considerations
268(1)
8.5 Mechanical Considerations
269(2)
8.6 Module Simulation and Monte Carlo Analysis
271(3)
8.7 Incorporating Digital into an RF Module
274(9)
8.7.1 Common Digital Uses
274(3)
8.7.2 Current Digital Infrastructure
277(2)
8.7.3 DDS
279(1)
8.7.4 Digital Radiation
280(1)
8.7.5 Avoiding Mixed-Signal Issues
280(3)
8.8 Power Management
283(2)
8.8.1 Voltage Regulators
283(2)
8.8.2 Power Management Integrated Circuit
285(1)
Exercises
285(1)
References
286(1)
Selected Bibliography
287(2)
9 Assembly and Prototyping 289(10)
9.1 Assembly Techniques
289(4)
9.1.1 Automated Dispense
289(1)
9.1.2 Pick and Place
290(1)
9.1.3 Reflow Soldering
290(1)
9.1.4 Rework Techniques
291(1)
9.1.5 Wire Bonding
291(1)
9.1.6 Inspection
292(1)
9.2 SMT Versus Wire Bonding
293(1)
9.3 Additive Manufacturing
294(1)
9.4 PCB Considerations
294(4)
9.4.1 PCB Stack-ups
295(1)
9.4.2 Rolled Versus Electrodeposited Copper
295(1)
9.4.3 Via Filling
296(1)
9.4.4 Tombstoning
296(1)
9.4.5 Metal Whiskers
297(1)
Exercises
298(1)
References
298(1)
10 On the Measurement Bench 299(20)
10.1 Measurement Uncertainty
300(1)
10.2 Test Fixture Design
301(7)
10.2.1 De-embedding Fixture Effects
303(1)
10.2.2 Connectors, Adapters, and Cables
304(4)
10.3 Bench Test Equipment
308(1)
10.4 Calibration
309(2)
10.4.1 SOLT Calibration
309(1)
10.4.2 TRL Calibration
310(1)
10.5 Tips for Making It All Work
311(4)
10.5.1 Unstable Active Circuits
311(1)
10.5.2 Incorrect Frequency Response
312(1)
10.5.3 Radiation or Coupling
312(1)
10.5.4 Low Gain or Output Power
313(1)
10.5.5 High Loss
314(1)
10.5.6 Catastrophic Damage at Initial Test
314(1)
10.6 Transistor Stabilization
315(2)
Exercises
317(1)
References
318(1)
Selected Bibliography
318(1)
11 Exploring Terahertz Radar 319(8)
11.1 What Is Terahertz?
319(1)
11.2 Applications at Terahertz
320(1)
11.3 Terahertz Versus Microwave
321(2)
11.4 Approaches for Tackling Terahertz
323(1)
11.4.1 Downconvert from Optics
323(1)
11.4.2 Design with Harmonics
323(1)
11.4.3 Design with Rectangular Waveguides
324(1)
Exercises
324(1)
References
325(1)
Selected Bibliography
325(2)
12 Final Thoughts 327(4)
Appendix 331 (10)
Acronyms and Abbreviations 341 (6)
About the Authors 347 (2)
Index 349