Muutke küpsiste eelistusi

E-raamat: Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB(R)

(Chinese Academy of Sciences, Beijing, China)
  • Formaat: 339 pages
  • Sari: SAR Remote Sensing
  • Ilmumisaeg: 19-Nov-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351011563
  • Formaat - PDF+DRM
  • Hind: 67,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 339 pages
  • Sari: SAR Remote Sensing
  • Ilmumisaeg: 19-Nov-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351011563

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Radar scattering and imaging of rough surfaces is an active interdisciplinary area of research with many practical applications in fields such as mineral and resource exploration, ocean and physical oceanography, military and national defense, planetary exploration, city planning and land use, environmental science, and many more. By focusing on the most advanced analytical and numerical modeling and describing both forward and inverse modeling, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® connects the scattering process to imaging techniques by vivid examples through numerical and experimental demonstrations and provides computer codes and practical uses. This book is unique in its simultaneous treatment of radar scattering and imaging.

Key Features

  • Bridges physical modeling with simulation for resolving radar imaging problems (the first comprehensive work to do so)
  • Provides excellent basic and advanced information for microwave remote-sensing professionals in various fields of science and engineering
  • Covers most advanced analytical and numerical modeling for both backscattering and bistatic scattering
  • Includes MATLAB®
      codes useful not only for academics but also for radar engineers and scientists to develop tools applicable in different areas of earth studies
  • Covering both the theoretical and the practical, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® is an invaluable resource for professionals and students using remote sensing to study and explain the Earth and its processes. University and research institutes, electrical and radar engineers, remote-sensing image users, application software developers, students, and academics alike will benefit from this book.

    The author, Kun-Shan Chen, is an internationally known and respected engineer and scientist and an expert in the field of electromagnetic modeling.

    Preface xi
    Acknowledgments xiii
    Author xv
    Chapter 1 Introduction
    1(22)
    1.1 Surface Scattering as a Random Process
    1(3)
    1.2 Nature of Wave Scattering from Rough Surface
    4(1)
    1.3 Radar Imaging Mechanisms and Computation
    5(8)
    1.4 Progress of the Subject
    13(5)
    References
    18(5)
    Chapter 2 Statistical Description of Rough Surfaces
    23(16)
    2.1 Types of Rough Surface
    23(2)
    2.1.1 Quasi-Periodic and Random Rough Surfaces
    23(1)
    2.1.2 Isotropic and Anisotropic Surfaces
    24(1)
    2.2 Statistics of Randomly Rough Surface
    25(5)
    2.2.1 Fractal Approach
    25(3)
    2.2.2 j-fc Approach
    28(2)
    2.3 Correlation Functions and Roughness Spectra
    30(3)
    2.4 Multiscale Rough Surface
    33(3)
    2.5 Uncertainties of Roughness Parameters
    36(2)
    References
    38(1)
    Chapter 3 Basics of Electromagnetic Wave
    39(20)
    3.1 Maxwell's Equations
    39(1)
    3.2 Constitute Relations
    40(2)
    3.3 Wave Reflection and Transmission at a Plane Boundary
    42(9)
    3.3.1 Laws of Reflection and Refraction
    42(3)
    3.3.2 Reflection and Transmission in a Layered Medium
    45(6)
    3.4 Radar Equations for Objects and Extensive Targets
    51(6)
    3.4.1 Radar Cross-Section
    51(4)
    3.4.2 Scattering Coefficient
    55(2)
    References
    57(2)
    Chapter 4 Analytical Modeling of Rough Surface Scattering
    59(66)
    4.1 Huygens-Fresnel Principle
    59(2)
    4.2 Electric Field Integral Equations (EFIE) and Magnetic Field Integral Equations (MFIE)
    61(3)
    4.3 Solutions of EFIE and MFIE--Numerical and Analytical Approaches
    64(5)
    4.3.1 Kirchhoff Approximation (KA)
    66(1)
    4.3.2 Small Perturbation Method (SPM)
    67(1)
    4.3.3 Small Slope Approximation (SSA)
    68(1)
    4.3.4 Integral Equation Model (IEM)
    69(1)
    4.4 Advanced Integral Equation Models
    69(17)
    4.4.1 Single and Multiple Scattering
    70(7)
    4.4.2 Multiple Scattering Contributions
    77(3)
    4.4.3 Validation of AIEM Model
    80(1)
    4.4.3.1 Comparison with Numerical Simulations
    80(1)
    4.4.3.2 Comparison with Measurement Data
    81(5)
    4.4.3.3 Comparison between POLARSCAT, NMM3D, SSA2, AIEM, and SPM2
    86(1)
    4.5 Numerical Examples for Soil and Ocean Surfaces
    86(29)
    4.5.1 Scattering Behaviors from Soil Surface
    86(1)
    4.5.1.1 Radar Backscattering Behaviors
    86(3)
    4.5.1.2 Radar Bistatic Scattering Behaviors
    89(7)
    4.5.2 Scattering Behaviors from Ocean Surface
    96(1)
    4.5.2.1 Radar Backscattering Behaviors
    96(15)
    4.5.2.2 Radar Bistatic Scattering Behaviors
    111(4)
    References
    115(3)
    Appendix 4A
    118(2)
    Appendix 4B
    120(1)
    Appendix 4C
    121(4)
    Chapter 5 Sensitivity Analysis of Radar Scattering of Rough Surface
    125(22)
    5.1 Extended Fourier Amplitude Sensitivity Test (EFAST)
    125(1)
    5.2 Entropy-Based Sensitivity Analysis (EBSA)
    126(2)
    5.3 Monostatic vs. Bistatic Scattering Patterns
    128(3)
    5.3.1 Monostatic Scattering Patterns
    128(1)
    5.3.1.1 Distribution Response of the Backscattering Coefficient
    128(1)
    5.3.1.2 SA by Information Entropy
    128(1)
    5.3.2 Bistatic Scattering Patterns
    129(2)
    5.4 Dependences on Radar Parameters
    131(3)
    5.4.1 Sensitivity to Incident Angle
    131(2)
    5.4.2 Sensitivity to Polarization
    133(1)
    5.4.3 Sensitivity to Multi-Angle
    133(1)
    5.5 Dependences on Surface Parameters
    134(9)
    5.5.1 Sensitivity to Soil Moisture
    136(2)
    5.5.2 Sensitivity to RMS Height
    138(2)
    5.5.3 Sensitivity to Correlation Length
    140(3)
    References
    143(4)
    Chapter 6 Geophysical Parameters Estimation
    147(12)
    6.1 Bayesian Estimation
    147(4)
    6.2 Cramer-Rao Bound
    151(1)
    6.3 Least Square Estimation
    152(2)
    6.4 Kalman Filter-Based Estimation
    154(4)
    References
    158(1)
    Chapter 7 Selected Model Applications to Remote Sensing
    159(22)
    7.1 Surface Parameter Response to Radar Observations--A Quick Look
    160(5)
    7.1.1 Comparison with POLARSCAT Data
    160(1)
    7.1.1.1 For Surface 1 (SI)
    160(1)
    7.1.1.2 For Surface 2 (S2)
    160(3)
    7.1.1.3 For Surface 3 (S3)
    163(1)
    7.1.2 Comparison with EMSL Data
    164(1)
    7.1.3 Comparison with SMOSREX06 Data
    165(1)
    7.2 Surface Parameter Retrieval
    165(10)
    7.2.1 Data Input-Output and Training Samples
    165(3)
    7.2.2 Retrieval Results Using Backscattering Coefficients
    168(1)
    7.2.3 Retrieval Using Bistatic Scattering Coefficients
    168(5)
    7.2.4 Comparison with Image-Based Surface Parameter Estimation from Polarimetric SAR Image Data
    173(2)
    7.3 Direction Estimation of Incident Source: A Data Analytic Example
    175(3)
    References
    178(3)
    Chapter 8 Radar Imaging Techniques
    181(56)
    8.1 Stochastic Wave Equations
    181(10)
    8.2 Time-Reversal Imaging
    191(7)
    8.3 Synthetic Aperture Imaging
    198(13)
    8.3.1 Signal Model
    198(3)
    8.3.2 SAR Path Trajectory
    201(3)
    8.3.3 Antenna Beam Tracking
    204(1)
    8.3.4 Simulation Examples
    204(7)
    8.4 Mutual Coherence Function
    211(4)
    8.5 Bistatic SAR Imaging
    215(15)
    8.5.1 Bistatic SAR Scattering Property
    216(2)
    8.5.2 Bistatic Imaging Geometry and Signal Model
    218(5)
    8.5.3 Bistatic Range History
    223(2)
    8.5.4 Examples
    225(5)
    References
    230(3)
    Appendix 8A
    233(2)
    Appendix 8B
    235(2)
    Chapter 9 Computational Electromagnetic Imaging of Rough Surfaces
    237(26)
    9.1 Rough Surfaces Fabrication by 3D Printing
    237(2)
    9.2 Experimental Measurements and Calibration
    239(4)
    9.3 Data Acquisition and Image Formation
    243(5)
    9.4 Image Statistics and Quality
    248(12)
    References
    260(3)
    Chapter 10 Advanced Topic: A Moon-Based Imaging of Earth's Surface
    263(54)
    10.1 Radar Moon-Earth Geometry
    263(5)
    10.1.1 Time and Space Coordinates
    264(2)
    10.1.2 Transformations from the ECI to ECR
    266(2)
    10.2 Spatiotemporal Coverage
    268(15)
    10.2.1 Geometric parameters
    268(4)
    10.2.2 Effective Range
    272(3)
    10.2.3 Moon-Based SAR's Spatial Coverage
    275(3)
    10.2.4 Temporal Variations in the Spatial Coverage
    278(1)
    10.2.5 Numerical Illustration of Spatiotemporal Coverage
    279(1)
    10.2.5.1 Hourly Variations
    279(1)
    10.2.5.2 Global Accumulated Visible Time within Different periods
    280(3)
    10.3 Propagation through Ionospheric layers
    283(9)
    10.3.1 Phase Error due to Temporal-Spatial Varying Background Ionosphere
    284(3)
    10.3.2 Slant Range in the Context of Background Ionospheric Effects
    287(2)
    10.3.3 SAR Signal in the Context of Background Ionospheric Effects
    289(3)
    10.4 Image Distortions by Dispersive Effects
    292(17)
    10.4.1 Ionospheric Effects on Range Imaging
    292(1)
    10.4.1.1 Range shift
    293(4)
    10.4.1.2 Range Defocusing
    297(7)
    10.4.2 Ionospheric Effects on Azimuth Imaging
    304(1)
    10.4.2.1 Azimuth Shift
    304(3)
    10.4.2.2 Azimuth Defocusing
    307(2)
    10.5 Image Simulations and Error Analysis
    309(4)
    10.5.1 Imaging of Point Targets
    310(1)
    10.5.2 Imaging of Extended Target
    311(2)
    References
    313(4)
    Index 317
    Kun-Shan Chen earned a PhD in electrical engineering at the University of Texas at Arlington in 1990. From 1992 to 2014, he was a professor at the National Central University, Taiwan. From 2014 to 2019, he was with the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, China. Since 2019, he has been a professor at Guilin University of Technology, where his research interests include microwave remote sensing theory, modeling, system, and measurement, and intelligent signal processing and data analytics for radar.

    He has authored or co-authored over 160 refereed journal papers, contributed 10 book chapters, co-authored (with A. K. Fung) Microwave Scattering and Emission Models for Users (Artech House, 2010), authored Principles of Synthetic Aperture Radar: A System Simulation Approach (CRC Press, 2015), and co-edited (with X. Li, H. Guo, X. Yang) Advances in SAR Remote Sensing of Ocean (CRC Press, 2018).

    His academic activities include being a guest editor for a special issue on Remote Sensing for Major Disaster Prevention, Monitoring and Assessment (2007) in IEEE Transactions on Geoscience and Remote Sensing, a guest editor for the special issue on Remote Sensing for Natural Disaster (2012) in Proceedings of the IEEE, IEEE GRSS Adcom member (20102014), a founding chair of the GRSS Taipei Chapter, an associate editor of the IEEE Transactions on Geoscience and Remote Sensing since 2000, founding deputy editor-in-chief of IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (20082010). He served as guest editor of the special issue of Data Restoration and Denoising of Remote Sensing Data and special issues of Radar Imaging Theory, Techniques, and Applications, both for Remote Sensing, and was co-chair of the Technical Committee for IGARSS 2016 and IGARSS 2017. He served as a member of the editorial board of the Proceedings of the IEEE (20142019) and has been a member of the editorial board of the IEEE Access since 2020. He is a Fellow of IEEE.