Muutke küpsiste eelistusi

E-raamat: Radar Techniques Using Array Antennas

  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 17-May-2013
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849196994
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 253,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 17-May-2013
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849196994
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas.



Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation studies and experimental array systems developed by the authors team at FGAN, now Fraunhofer.



This new edition has been fully updated and revised, and includes discussion of compressed sensing and its possible application to beam forming, some results for phase-only-nulling against jammers, descriptions of further algorithms for superresolution for location and separation of radar targets and the reconnaissance of other radiating sources, extension and explanation of the basic ideas for MIMO-radar, and a new chapter on radar operation by passive coherent location.



Providing many valuable lessons for designers of future high standard multifunction radar systems for military and civil applications, this book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.
Preface xv
Preface to the 2nd edition xviii
Abbreviations xix
Symbols xxiii
1 Introduction 1(4)
2 Signal representation and mathematical tools 5(12)
2.1 Vectors, matrices
5(1)
2.2 Computing with matrices
6(4)
2.2.1 Addition and subtraction
6(1)
2.2.2 Multiplication
6(2)
2.2.3 Identity matrix
8(1)
2.2.4 Inverse matrix
8(1)
2.2.5 Eigenvalue decomposition
9(1)
2.2.6 QR decomposition
9(1)
2.3 Fourier transform
10(1)
2.3.1 Fast Fourier transform
11(1)
2.4 Filter in the frequency and time domain
11(3)
2.5 Correlation
14(1)
2.6 Wiener-Khintchine theorem
15(1)
References
16(1)
3 Statistical signal theory 17(32)
3.1 The general tasks of signal processing
17(1)
3.2 Introduction to basics of statistics
18(15)
3.2.1 Probabilities for discrete random variables
19(2)
3.2.2 Continuous random variables
21(3)
3.2.3 Functions of random variables
24(4)
3.2.4 Statistical averages
28(2)
3.2.5 Correlation
30(1)
3.2.6 Gaussian density function
30(1)
3.2.7 Correlated Gaussian variables
31(2)
3.2.8 Complex Gaussian variables
33(1)
3.3 Likelihood-ratio test
33(6)
3.4 Parameter estimation
39(5)
3.4.1 Variance of the estimate and Cramer–Rao limit
39(5)
3.5 Estimation of a signal
44(4)
3.5.1 Maximum-likelihood estimation
44(1)
3.5.2 Signal estimation with least mean-square error
44(1)
3.5.3 Interference suppression by the inverse covariance
45(2)
3.5.4 Improvement of signal-to-noise-and-interference ratio (SNIR)
47(1)
3.6 Summary
48(1)
References
48(1)
4 Array antennas 49(36)
4.1 Array factor
50(5)
4.2 Array parameters
55(6)
4.2.1 Half-power beamwidth
55(1)
4.2.2 Bandwidth limitation with phase steering
56(1)
4.2.3 Antenna element spacing without grating lobes
57(1)
4.2.4 Gain of regular-spaced planar arrays with d = λ/2
58(1)
4.2.5 Reduction of sidelobes by tapering
59(2)
4.3 Circular array
61(2)
4.4 Phase and amplitude errors
63(5)
4.5 Architectures of passive and active array antennas
68(5)
4.5.1 Comparison of efficiency for active and passive array
72(1)
4.5.2 Radar equation for active arrays
73(1)
4.6 Concepts for an extended field of view
73(5)
4.6.1 Volume array for complete azimuth coverage
74(4)
4.7 Monitoring of phased array antennas
78(2)
4.7.1 Antenna measurement
78(1)
4.7.2 Transmit/receive module (TRM) monitoring
78(2)
4.8 Appendix: Taylor and Bayliss weighting
80(2)
References
82(3)
5 Beamforming 85(28)
5.1 Single receiving beam
87(8)
5.1.1 RF-beamforming
87(1)
5.1.2 Subarrays and partial digital beamforming
87(2)
5.1.3 Dynamic range requirements
89(1)
5.1.4 Subarray configuration for digital sum and difference beamforming
90(4)
5.1.5 Correction of antenna failures
94(1)
5.1.6 Digital beamforming at element level
95(1)
5.2 Broad band beamforming
95(4)
5.3 Multiple beams
99(6)
5.3.1 RF multiple beamforming
100(1)
5.3.2 RF-multiple beamforming using subarrays
101(1)
5.3.3 IF multiple beamforming by a resistive network
102(1)
5.3.4 Baseband multiple beamforming
102(1)
5.3.5 Time-multiplex beamforming for arbitrary directions
102(1)
5.3.6 Digital multiple beamforming using subarrays
102(2)
5.3.7 Multiple beam cluster for target search
104(34)
5.3.7.1 Fan beam for transmitting and receiving
104(1)
5.3.7.2 Fan beam for transmitting and a cluster of pencil beams for receiving
105(1)
5.4 Deterministic spatial filtering
105(2)
5.5 Compressed sensing for beamforming
107(4)
References
111(2)
6 Sampling and digitisation of signals 113(16)
6.1 Analytical signal
113(3)
6.2 Sampling and interpolation
116(2)
6.3 Extraction of the components I and Q in digital format
118(7)
6.4 Third-order intercept point and dynamic range
125(2)
References
127(2)
7 Pulse compression with polyphase codes 129(32)
7.1 Introduction
129(1)
7.2 Requirements and basic structure for pulse compression
130(1)
7.3 Binary phase codes
131(1)
7.4 Polyphase code as an approximation of linear frequency modulation
132(6)
7.5 Reduction of range sidelobes
138(4)
7.5.1 Application of a weighting function
138(1)
7.5.2 Application of a mismatched LS filter
139(3)
7.5.3 Application of an estimation filter
142(1)
7.6 Reduction of sidelobes by a phase code from nonlinear frequency modulation
142(5)
7.7 Complementary codes
147(1)
7.8 Polyphase code with periodic repetition
148(2)
7.9 Pulse eclipsing
150(1)
7.10 High range resolution by oversampling and LS pulse compression
151(6)
7.10.1 Calculation of the filter function for the pulse compression
152(1)
7.10.2 Subpulse filter
152(1)
7.10.3 Gain or S/N loss
153(1)
7.10.4 Pulse compression of simulated signals
153(2)
7.10.5 Compression of measured echo signals
155(2)
7.11 Conclusions
157(1)
References
158(3)
8 Detection of targets by a pulse series 161(32)
8.1 Filter against fixed clutter
163(3)
8.2 Doppler filter processor
166(2)
8.3 Adaptive suppression of weather clutter
168(9)
8.3.1 Computation of the gain
171(1)
8.3.2 Evaluation of experimental signals
172(5)
8.4 Suppression of sea clutter
177(1)
8.5 Estimation of Doppler frequency
178(6)
8.5.1 Accuracy of Doppler estimation by Cramer-Rao bound
180(3)
8.5.2 Simplified Doppler estimator
183(1)
8.6 Coherent detection with long pulse series
184(6)
8.6.1 Variable Doppler frequency of the target signal
184(2)
8.6.2 Coherent test function for long echo series
186(3)
8.6.3 Comparison of detection performance of the filter bank and ACE-test for LFM Doppler signals
189(1)
8.7 Conclusions
190(1)
References
190(3)
9 Sequential detection 193(34)
9.1 Incoherent detection
195(1)
9.2 Multiple range elements
196(4)
9.2.1 Independent test of all range elements
196(1)
9.2.2 Common test for all range elements
196(1)
9.2.3 Combined test with range-dependent design signal
197(1)
9.2.4 Comparison of the test for multiple range cells with the fixed sample size test
198(2)
9.2.5 Sequential detection with a filter for the rejection of stationary clutter
200(1)
9.3 Coherent test function
200(13)
9.3.1 Test function with autocorrelation estimates
201(2)
9.3.2 Sequential test function with autocorrelation estimates
203(3)
9.3.3 Simulation studies for a comparison of incoherent and coherent sequential tests
206(4)
9.3.4 Gain comparison of the coherent sequential and fixed sample size test
210(1)
9.3.5 Extension for multiple range elements
210(3)
9.3.6 Variable Doppler frequency of the target signal
213(1)
9.4 Comparison of detection procedures
213(1)
9.5 Adaptation to the noise level and energy management
214(1)
9.6 Sequential test for long signal series
215(5)
9.6.1 Sequential test with coherent sections
216(1)
9.6.2 Simulation studies
217(3)
9.7 Experimental system
220(4)
9.8 Conclusions
224(1)
References
225(2)
10 Adaptive beamforming for jammer suppression 227(36)
10.1 Deterministic generation of pattern notches
229(5)
10.1.1 LMS weighting
230(2)
10.1.2 Multiple beam approach
232(1)
10.1.3 Limit for number of notches
233(1)
10.2 Adaptive jammer suppression
234(5)
10.2.1 Optimal processing
234(2)
10.2.2 Illustration with a model
236(1)
10.2.3 Orthogonalisation and eigenmatrix projection
236(3)
10.3 Antenna architecture for adaptation
239(2)
10.3.1 Adaptation before beamforming
240(1)
10.3.2 Adaptive beamforming with subarrays
240(1)
10.4 Adaptation algorithms
241(9)
10.4.1 Sample matrix estimation
241(1)
10.4.2 Projection methods
242(3)
10.4.3 Channel errors
245(3)
10.4.4 Weighted projection: lean matrix inversion method
248(2)
10.5 Realisation aspects
250(1)
10.6 Experiments with the ELRA system
251(5)
10.7 Robustness against jammer motion
256(1)
10.8 Phase-only adaptive beamforming
257(1)
10.9 Conclusions
258(1)
References
259(4)
11 Monopulse direction estimation 263(32)
11.1 Likelihood direction estimation
263(5)
11.2 Experimental monopulse correction for failing elements
268(7)
11.3 Variance of monopulse estimate
275(2)
11.4 Monopulse correction against jamming
277(13)
11.4.1 Correction with likelihood estimation
277(5)
11.4.2 Correction in expectation
282(5)
11.4.3 Statistical performance analysis of estimation
287(3)
11.5 Polarisation independence
290(1)
11.6 Indication of multiple targets
291(2)
11.7 Conclusions
293(1)
References
293(2)
12 Array processing for super-resolution in angle 295(52)
12.1 Introduction
295(1)
12.2 Parametric estimation
296(10)
12.2.1 Resolution limit from Cramer-Rao inequality
303(3)
12.3 Experimental verification of super-resolution
306(3)
12.4 Resolution by angular spectral estimation algorithms
309(7)
12.4.1 Resolution and the dimension of the signal subspace
312(3)
12.4.2 Estimation of the signal subspace dimension
315(1)
12.5 Expectation maximisation (EM) and space alternating expectation maximisation (SAGE)
316(3)
12.6 Root-MUSIC
319(1)
12.7 ESPRIT procedure with least square (LS) and total least square (TLS)
320(4)
12.7.1 Total least square procedure
322(2)
12.8 Experimental active receiving array system
324(1)
12.9 Error consequences
325(1)
12.10 Array calibration
326(17)
12.10.1 Autocalibration for a uniform linear array
326(1)
12.10.2 Iterative algorithm for gain and phase calibration
327(1)
12.10.3 Angular ambiguity
328(3)
12.10.4 Experimental autocalibration
331(2)
12.10.5 Extension to calibration of mutual coupling
333(2)
12.10.6 Autocalibration for a volume array
335(1)
12.10.7 Estimation of antenna element position errors
336(3)
12.10.8 Experimental super-resolution in angle
339(1)
12.10.9 Autocalibration in case of multipath propagation
340(3)
12.11 Conclusions
343(1)
References
344(3)
13 Space–time adaptive processing 347(18)
13.1 Introduction
347(1)
13.2 Doppler-shifted clutter spectrum
347(3)
13.3 Space–time processing
350(3)
13.4 Necessary degrees of freedom
353(1)
13.5 Suboptimal concept with FIR filter: reduction of time dimension
354(3)
13.6 Suboptimal concept with subarrays: reduction of spatial dimension
357(5)
13.7 Adaptive processing
362(1)
13.8 Sideways-Looking Radar
363(1)
13.9 Conclusion
363(1)
References
363(2)
14 Synthetic aperture radar with active phased arrays 365(28)
14.1 Basic principle of SAR
365(5)
14.2 Problems of moving-target detection and location
370(1)
14.3 Clutter suppression with multichannel array radar
371(7)
14.4 Target location
378(1)
14.5 SAR/MTI processing
379(2)
14.6 Jammer suppression
381(1)
14.7 Object height by interferometry
382(3)
14.8 Experimental system AER and results
385(4)
14.9 Summary and motivations for SAR with active phased-array antennas
389(1)
References
390(3)
15 Inverse synthetic aperture radar (ISAR) 393(22)
15.1 Introduction: basic principle
393(1)
15.2 Synthetic aperture and beam forming by target motion
394(2)
15.3 Target cross-range image
396(2)
15.4 Focusing
398(10)
15.4.1 Range focusing and range walk
398(1)
15.4.2 Focusing with straight-line assumption
399(1)
15.4.3 Focusing for arbitrary flight paths
400(39)
15.4.3.1 Iteration with Fourier transform and Kalman filter
400(1)
15.4.3.2 Doppler shift of a target and its scatterers
401(3)
15.4.3.3 Focusing with Wigner–Ville distribution
404(4)
15.5 High-range resolution
408(4)
15.6 Alternative image planes
412(1)
15.7 Conclusions
413(1)
References
413(2)
16 Target classification 415(12)
16.1 Fluctuation effects
415(3)
16.2 Doppler spectrum evaluation
418(7)
References
425(2)
17 Experimental phased-array system ELRA 427(28)
17.1 System overview
427(2)
17.2 Antenna parameter selection
429(3)
17.3 Antenna elements and modules
432(2)
17.4 Antenna control and monitoring
434(5)
17.5 Radar functions and waveforms of the ELRA system
439(5)
17.5.1 Available codes and transmit pulses
441(1)
17.5.2 Time budget for a parameter example
441(26)
17.5.2.1 Search function
442(2)
17.5.2.2 Target location and tracking
444(1)
17.6 Digital signal processing
444(3)
17.7 Array signal processing
447(1)
17.8 Control system, operation and display of functions and results
447(5)
17.9 Experiments with ELRA
452(1)
17.10 Conclusions
452(1)
References
452(3)
18 Floodlight and MIMO radar concepts 455(32)
18.1 Introduction
455(1)
18.2 The proposed OLPI concept
456(2)
18.3 The transmitter
458(1)
18.4 The receiving system
458(2)
18.5 Resolution cell
460(1)
18.6 The phase code
461(1)
18.7 Signal processing
462(2)
18.8 Range performance
464(1)
18.9 Coherent and sequential test function with ACE
465(1)
18.10 OLPI and multifunction radar
466(1)
18.11 Experimental results
467(1)
18.12 Detection and classification of hovering helicopters
467(10)
18.12.1 Classification by flash period
472(1)
18.12.2 ISAR image and spectrum of rotor blades
472(5)
18.13 Spatial coding with a MIMO radar
477(6)
18.14 Summary and conclusions
483(1)
References
484(3)
19 System and parameter considerations 487(12)
19.1 Parameter selection for search and tracking
487(9)
19.1.1 Search period
488(3)
19.1.2 False-alarm probability
491(1)
19.1.3 Beam position separation
492(1)
19.1.4 Range resolution
493(1)
19.1.5 Tracking parameters
494(2)
19.2 Search procedure
496(1)
References
497(2)
20 Passive radar 499(20)
20.1 Introduction
499(1)
20.2 Parameters and achievable range
500(2)
20.3 Signal description and resolution
502(3)
20.4 Signal processing
505(6)
20.4.1 Adaptive beamforming
505(1)
20.4.2 Clutter cancellation
506(2)
20.4.3 Signal integration
508(3)
20.5 Reference signal
511(2)
20.6 Experimental results
513(2)
20.7 Tracking
515(2)
References
517(2)
Index 519
Wulf-Dieter Wirth was founder and head of the Electronics Department of FGAN, the German defence research establishment, for about 40 years. He received his Dr.-Ing degree in electrical engineering from the Technical University ofg Berlin, Germany in 1962. He has published more than 50 papers with emphasis on phased array radar and signal procesing and presented reguarly at radar conferances. He was a member of several NATO research studies and other international working groups and the radar-committee of DGON. Since his retirement he has been a senior scientist at Fraunhofer FKIE, working on array signal processing for reconnaissance and passive coherent location radar.