Muutke küpsiste eelistusi

E-raamat: Radiation, Ionization, and Detection in Nuclear Medicine

  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Mar-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642340765
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Mar-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642340765
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Progress in in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have greatly enhanced medicine's fight against the global scourge of cancer. This volume has extended discussion on all these topics.

? This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

1 Nuclear Radiation, Ionization, and Radioactivity
1(58)
1.1 Introduction
2(1)
1.2 Ionizing Radiation and Consequences
3(1)
1.3 Visual Demonstration of Radiation
4(1)
1.4 Definition
5(10)
1.5 Sources of Nuclear Radiation
15(6)
1.6 Attenuation Coefficient of γ-Rays
21(1)
1.7 Half-Value Layer
22(1)
1.8 Neutrons
23(2)
1.9 Neutron Scattering
25(2)
1.10 The Cross-Section Concept
27(1)
1.11 Thermal Neutrons
27(1)
1.12 Neutron Sources
28(1)
1.13 Neutron Shielding
28(1)
1.14 X-Rays
29(8)
1.15 Interactions of X-Rays
37(3)
1.16 Photoelectric Effect
40(1)
1.17 Pair Production
41(2)
1.18 Use of Natural Forces for the Material Improvement of Mankind
43(1)
1.19 Radionuclides
44(1)
1.20 Production of Radionuclides
44(3)
1.21 Developments and Uses of Radionuclides
47(4)
1.22 Summary
51(8)
References
52(7)
2 Radiation Exposure: Consequences, Detection, and Measurements
59(76)
2.1 Introduction
60(1)
2.2 Sources of Radiation Exposure
60(1)
2.3 Biological and Related Effects of Radiation
61(6)
2.4 Effects of Radiation on Consumable Products
67(1)
2.5 Effects of Radiation
68(5)
2.6 Detection of Radiation
73(2)
2.7 Neutron Detection
75(2)
2.8 Boron Reaction
77(1)
2.9 Lithium Reaction
78(1)
2.10 Instrumentation
78(9)
2.11 Photomultiplier
87(3)
2.12 Modes of Detector Operation
90(5)
2.13 Recording and Measurement Techniques
95(20)
2.14 Statistical Fluctuations in Nuclear Process
115(8)
2.15 Chi-Square Distribution
123(2)
2.16 Pros and Cons of Radiation Energy
125(1)
2.17 Summary
126(9)
References
126(9)
3 Mathematical Modeling of Radiation
135(52)
3.1 Introduction
135(2)
3.2 Trapping and De-trapping
137(4)
3.3 Polarization
141(2)
3.4 Electrode Design
143(3)
3.5 Frisch Grid Design
146(4)
3.6 Coplanar Design
150(3)
3.7 Pixelated Design
153(4)
3.8 Digital Radiation Detector
157(5)
3.9 Direct Conversion Efficiency
162(4)
3.10 Measurement of Alpha, Beta, and Gamma Radiation
166(2)
3.11 Noise in a Radiation Detector
168(7)
3.12 Noise and Its Effect on Medical Imaging
175(2)
3.13 Dead Time
177(10)
References
180(7)
4 Medical Imaging
187(64)
4.1 Introduction
188(1)
4.2 Radiation and Carcinogen
189(2)
4.3 Molecular (Medical) Imaging
191(4)
4.4 More Advanced Technology for Medical Imaging
195(2)
4.5 Advanced Tools (Instruments) for Medical (Molecular) Imaging
197(12)
4.6 X-Ray Computed Tomography (CT)
209(4)
4.7 Nuclear Medicine Imaging
213(2)
4.8 Image Acquisition
215(12)
4.9 Imaging Technology
227(9)
4.10 Dependency of the Quality of the Medical Imaging System
236(6)
4.11 Energy Resolution
242(2)
4.12 Digital Image Acquisition System
244(2)
4.13 Summary
246(5)
References
247(4)
5 Basic Principles of Radiation Detectors
251(36)
5.1 Introduction
251(2)
5.2 Working Principle of the Detectors Used in Nuclear Medicine
253(2)
5.3 Organic Scintillators
255(2)
5.4 Light Output in an Organic Scintillator
257(2)
5.5 Kinetics of Quenching in Organic Scintillators
259(2)
5.6 Scintillation Efficiency of an Organic Scintillator
261(1)
5.7 Structural and Electronic Properties of Scintillators
262(3)
5.8 Detector Counting Efficiency (ηc)
265(1)
5.9 Time Resolution of an Inorganic Scintillator
266(1)
5.10 Interaction of Ionizing Radiation with Scintillators
266(3)
5.11 Ionization Losses
269(3)
5.12 Inorganic Scintillators
272(5)
5.13 Defect Formation by Ionizing Radiation
277(1)
5.14 Solid-State Detector
278(9)
References
282(5)
6 Theoretical Approach of Crystal and Film Growths of Materials Used in Medical Imaging System
287(28)
6.1 Introduction
287(2)
6.2 Theory of Crystal Growth
289(4)
6.3 Theoretical Modeling of Growing Single Crystal/Polycrystal Used in Radiation Detection and Medical Imaging
293(2)
6.4 Growth of a Crystal on a Seed
295(4)
6.5 Physical Vapor Transport (PVT) and Bridgman-Stockbarger (BS) Processes
299(5)
6.6 Traveling Heater Method (THM)
304(1)
6.7 Metal Solution Growth
305(2)
6.8 Purification of Crystal
307(1)
6.9 Thin- and Thick-Film Technology
308(2)
6.10 Solgel Coating (SGC)
310(5)
References
311(4)
7 Device Fabrication (Scintillators/Radiation Detectors)
315(52)
7.1 Introduction
316(1)
7.2 Compound Halides
316(5)
7.3 Halides of Heavy Metals
321(12)
7.4 Lanthanide Halides
333(9)
7.5 Complex Oxides with High Atomic Number
342(9)
7.6 Compound Semiconductor
351(2)
7.7 Cadmium Zinc Telluride (CZT)
353(1)
7.8 Elemental Semiconductor
354(13)
References
360(7)
8 Characterization of Radiation Detectors (Scintillators) Used in Nuclear Medicine
367(84)
8.1 Introduction
368(1)
8.2 Compound Halides
368(2)
8.3 Alkali Halides
370(14)
8.4 Halides of Heavy Metals
384(20)
8.5 Lanthanide (Ln) Halides
404(13)
8.6 Cerium-Activated Lutetium Oxyorthosilicate (LSO, Lu2SiO5)
417(3)
8.7 Complex Oxides with High Atomic Number
420(2)
8.8 Cadmium Telluride (CdTe) Crystals
422(4)
8.9 Cadmium Zinc Telluride (CZT)
426(3)
8.10 Elemental Semiconductor
429(22)
References
442(9)
9 Instrumentation and Its Applications in Nuclear Medicine
451(44)
9.1 Introduction
451(3)
9.2 Administration of the Radionuclides
454(1)
9.3 Preparation of Radionuclides
455(4)
9.4 Radiation Dose
459(1)
9.5 Radiation Therapy
460(1)
9.6 Intensity-Modulated Radiation Therapy (IMRT)
461(3)
9.7 Scintigraphy
464(21)
9.8 Fusion or Hybrid Technology
485(2)
9.9 Final Remarks
487(8)
References
490(5)
Glossary 495(6)
Index 501