Muutke küpsiste eelistusi

E-raamat: Radiation Oncology Advances

Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Cancer Treatment and Research 139
  • Ilmumisaeg: 20-Sep-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387367446
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Cancer Treatment and Research 139
  • Ilmumisaeg: 20-Sep-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387367446
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

from combining radiation with a molecular targeted agent namely cetuximab, a recombinant mouse/human chimeric monoclonal antibody against the Epidermal Growth Factor (EGF) receptor [ 4] Astsaturov, Cohen and Harari present a more indepth review of the biology of the EGF Receptor and its signaling pathway in Chap. 7 as a potential target in combination with fractionated radiotherap y for head and neck squamous cell carcinoma (HNSCC). A flurry of agents are under de velopment for targeting EGFR and in March 2006, the US Food and Drugs Administration approved cetuximab combined with radiation as a primary treatment option for patients with loco-regionally advanced HNSCC in whom chemoradiation therapy is deemed not to be an option. While blocking the EGF pathway during fractionated radiotherapy may seem an obvious strategy [ 5], the rationale for combining antiangiogenic and antivascular targeting agents with radiation may be less intuitive. However, recent research shows that there are several reasons why this could result in a therapeutic gain in practice. Chapter 8 is a review of this rapidly expanding field by Citrin and Camphausen. Targeted agents combined with radiation may offer new opportunities in the treatment of central nervous system malignancies, a tumor type where the outlook remains poor despite some recent progress [ 6]. Current attempts to overcome rad- tion resistance in these tumors on the basis of an improved understanding of their molecular biology are the topic of Chap. 9 by Chakravarti and Palanichamy.

Arvustused

From the reviews:



"Major advances in radiation oncology ... are reviewed in this book. ... Resident, attending and practicing radiation oncologists are the intended audience. The authors are respected radiation oncology practitioners and researchers. ... This excellent account of the major recent advances in radiation oncology is well written and edited. ... It is useful for both practicing and in-training radiation oncologists." (Jyoti Mayadev, Doody's Review Service, December, 2008)

Radiation Oncology Advances: An Introduction
1(6)
Soren M. Bentzen
Paul M. Harari
Wolfgang A. Tome
Minesh P. Mehta
Advances in Imaging and Theragnostic Radiation Oncology
1(1)
Advances in Molecular Biology and Targeted Therapies
2(1)
Advances in Treatment Delivery and Planning
3(1)
Clinical Advances
4(1)
References
4(3)
Section I. Advances in Imaging and Biologically-Based Treatment Planning
Advanced Image-Guided External Beam Radiotherapy
7(34)
Thomas Rockwell Mackie
Wolfgang Tome
Introduction
7(25)
Image Guidance for Defining Target Volumes
9(4)
Image Guidance at the Time of Delivery
13(1)
Optical Guidance
14(1)
Optical Tracking Systems
15(1)
Optical Tracking in Fractionated Stereotactic Radiotherapy, intracranial, and Head and Neck IMRT
16(2)
Optically Guided Ultrasound
18(2)
In-Room CT Guidance
20(7)
Image Guidance and Organ Motion
27(2)
Image Guidance for Follow-Up Imaging and Retreatments
29(2)
Summary
31(1)
References
32(9)
Dose Painting and Theragnostic Imaging: Towards the Prescription, Planning and Delivery of Biologically Targeted Dose Distributions in External Beam Radiation Oncology
41(22)
Søren M. Bentzen
Radiation Theragnostics
41(1)
From Anatomical to Biological Targeting in Radiation Therapy
42(1)
From Target Selection and Delineation to 4D Dose Prescription
43(1)
The Case for Nonuniform Theragnostic Dose Distributions
44(3)
Precision Requirements
47(1)
Targeting Hypoxia Using EBRT: Are We Ready for Dose Painting by Numbers?
48(9)
Hypoxia as a Cause of Clinical Failure of Radiation Therapy
48(2)
Hypoxia Imaging
50(3)
Spatiotemporal Stability of the PET Hypoxia Map
53(3)
Dose Painting by Numbers
56(1)
Dose Delivery and Expected Change in Outcome
57(1)
Conclusion
57(1)
References
58(5)
Molecular and Functional Imaging in Radiation Oncology
63(34)
Robert Jeraj
M. Elizabeth Meyerand
Introduction
63(1)
Molecular and Functional Imaging Modalities
64(3)
Positron Emission Tomography
64(1)
Single Photon Emission Tomography
65(1)
Dynamic Contrast Enhanced Computer Tomography (DCE-CT)
65(1)
Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)
65(1)
Magnetic Resonance Spectroscopy
66(1)
Optical Imaging
66(1)
Comparison Between Different Imaging Modalities
66(1)
Molecular and Functional Imaging Targets
67(13)
Cellular Metabolism
68(4)
Cellular Proliferation
72(1)
Cellular Death
73(1)
Cellular Regulation
74(3)
Tumor Microenvironment
77(3)
Future
80(2)
References
82(15)
Prognostic and Predictive Markers in Radiation Therapy: Focus on Prostate Cancer
97(20)
Mark A. Ritter
Introduction
97(1)
The Need for Biomarkers of Radiation Response in Prostate Cancer
97(1)
Optimal Biomarkers and Patient Cohort Characteristics
98(1)
Evaluation of Candidate Markers
99(3)
Biological Rationale
99(3)
Biomarker Frequency
102(1)
Biomarker Assessment Methods
102(1)
Immunohistochemistry
103(1)
Clinical Correlative Data in Prostate Cancer
104(2)
Markers of Cell Cycle Control, DNA Repair and Apoptosis
105(1)
Proliferation
105(1)
Hypoxia
106(1)
Limitations of Existing Studies
106(1)
Future Studies and Directions
107(2)
Large Prospective Clinical Trials
107(1)
Biomarker-Based Adaptive Therapy
108(1)
Conclusion
109(1)
References
109(8)
Section II. Advances in Molecular Biology and Targeted Therapies
Overview of Cancer Molecular Radiobiology
117(18)
Jann N. Sarkaria
Robert G. Bristow
Introduction
117(1)
Interaction of Radiation with Living Cells
117(1)
Cellular Response to Ionizing Radiation
118(1)
Cell Cycle Arrest
118(2)
DNA Repair
120(1)
Apoptosis
121(1)
Cell Survival Signaling
122(2)
Ras Signaling
122(1)
Receptor Tyrosine Kinases
123(1)
mTOR Signaling
123(1)
Targeting Housekeeping Proteins
124(5)
HSP90 Inhibitors
125(1)
HDAC Inhibitors
126(2)
Proteosome Inhibitors
128(1)
Conclusion
129(1)
References
130(5)
Clinical Application of EGFR Inhibitors in Head and Neck Squamous Cell Cancer
135(18)
Igor Astsaturov
Roger B. Cohen
Paul M. Harari
Introduction
135(1)
EGFR Biology
136(2)
Anti-EGFR Monoclonal Antibodies
138(5)
Radiation Plus Cetuximab For Locoregionally Advanced HNSCC
138(2)
Cetuximab, Cisplatin, and Radiation in Locoregionally Advanced HNSCC
140(1)
Cetuximab ± Chemotherapy in Recurrent and/or Metastatic HNSCC
141(1)
Cetuximab with Chemotherapy in the First-Line Treatment of Patients with Recurrent and/or Metastatic HNSCC
142(1)
EGFR Tyrosine Kinase Inhibitors (TKIs)
143(2)
TKI Monotherapy in HNSCC
144(1)
TKIs in Combination with Radiation Therapy
144(1)
TKIs with Dual Specificity
145(1)
Patient Selection
145(1)
Conclusions
146(1)
References
147(6)
Advancement of Antiangiogenic and Vascular Disrupting Agents Combined with Radiation
153(20)
Deborah Citrin
Kevin Camphausen
Introduction
153(1)
Tumor Vasculature
153(2)
Targeting the Tumor Vasculature
155(1)
Antiangiogenic Agents
155(3)
Vascular Disrupting Agents
158(2)
Combining Antiangiogenic and Vascular Disrupting Agents with Radiation
160(1)
Antiangiogenic Agents and Radiation in the Laboratory
160(5)
Angiogenesis Inhibitors and Radiation in the Clinic
162(1)
Vascular Disrupting Agents and Radiation in the Laboratory
163(1)
Vascular Disrupting Agents with Radiation in the Clinic
164(1)
Future Directions
165(1)
Conclusion
166(1)
References
167(6)
Overcoming Therapeutic Resistance in Malignant Gliomas: Current Practices and Future Directions
173(20)
Arnab Chakravarti
Kamalakannan Palanichamy
Introduction
173(1)
Signal Transduction Pathways Involved in Treatment Resistance
173(2)
Angiogenesis Pathways
175(2)
Conventional Chemotherapeutic Agents in Malignant Gliomas
177(5)
Biotherapeutic Strategies
182(2)
Antiepidermal Growth Factor Receptor (EGFR) Strategies
182(2)
mTor Pathway Inhibition: CCI-779
184(1)
Antiangiogenic Strategies
185(1)
Summary
186(1)
References
186(7)
Section III. Advances in Treatment Delivery and Planning
Advances in Intensity-Modulated Radiotherapy Delivery
193(22)
John D. Fenwick
Stephen W. Riley
Alison J.D. Scott
Introduction
193(1)
Background
193(1)
Fixed-Field IMRT
194(5)
Direct Aperture Optimisation and Jaws-Only Linear Accelerator IMRT
199(1)
Tomotherapy
199(9)
Axial Tomotherapy
200(1)
Helical Tomotherapy
201(5)
Future Developments
206(2)
CyberKnife
208(1)
Summary
209(1)
References
210(5)
Image-Based Modeling of Normal Tissue Complication Probability for Radiation Therapy
215(42)
Joseph O. Deasy
Issam El Naqa
Introduction
215(4)
NTCP Models: Tools or Toys?
216(2)
Why Image-Based NTCP Analysis?
218(1)
Tissue Dose-Response Classification
219(3)
The Concepts of ``Serial'' and ``Parallel'' Tissue Dose-Response
219(2)
Local vs. Global Organ Injuries
221(1)
NTCP Models
222(10)
The Generalized Equivalent Uniform Dose Equation
223(2)
Basic Mathematical Features of Common NTCP Functions
225(2)
Cluster Models
227(1)
A Data-Mining/Data-Driven Approach to NTCP Modeling
227(4)
Selection of Relevant Input Variables
231(1)
Selection of Model Functional Form
232(1)
Selection of Model Order
233(4)
Model Order Based on Information Theory
233(2)
Model Order Based on Cross-validation Methods
235(1)
Model Variable Stability
235(1)
Model Parameter Fitting
235(1)
Image-Based Factors and Radiosensitivity Predictors
236(1)
Some Critical NTCP Endpoints
237(11)
Late Rectal Toxicity Due to External Beam Prostate Cancer Treatment
237(1)
Radiation Pneumonitis Due to Thoracic Irradiation for Lung Cancer
238(2)
Xerostomia Due to Head and Neck Cancer Treatment
240(3)
Drawbacks to Treatment Planning Based on Dose-Volume Limits
243(1)
Uncertainties in NTCP Models
244(1)
Incorporating Fractionation Sensitivity
245(3)
Summary
248(1)
References
248(9)
Optimization of Radiotherapy Using Biological Parameters
257(24)
Yusung Kim
Wolfgang Tome
Introduction
257(7)
The Need for Optimization Based on Biological Parameters
259(1)
Radiobiological Models
260(4)
Biological Optimization
264(6)
Subvolume-Based Radiobiological Models
264(6)
Impact of Diagnostic Accuracy on Biological Optimization
270(4)
Functional Imaging in Oncology
270(1)
Theragnostic Imaging in Risk-Adaptive Radiotherapy
270(1)
The Impact of Imaging Sensitivity on Risk-Adaptive Radiotherapy
271(1)
Clinical Parameters Necessary for Biological Optimization
272(2)
Summary
274(1)
References
275(6)
Section IV. Clinical Advances
Combined Chemoradiotherapy Advances
281(26)
Gordon Wong
Minesh P. Mehta
Introduction
281(1)
Head and Neck Cancers
282(6)
Nonsmall Cell Lung Carcinoma
288(4)
Cervical Carcinoma
292(2)
Esophageal Carcinoma
294(2)
Rectal Adenocarcinoma
296(2)
Anal Squamous Cell Carcinoma
298(1)
Muscle Invasive Bladder Cancer
299(1)
Conclusion
300(1)
References
300(7)
Cytoprotection for Radiation-Associated Normal Tissue Injury
307(22)
Jingfang Mao
Oluwatoyosi A. Fatunase
Lawrence B. Marks
Biologic Rationale of Cytoprotectors
307(2)
Assessment of Amifostine in Patients with Head and Neck Cancer
309(1)
Assessment of Amifostine in Patients with Thoracic Tumors
309(3)
Lung Injury
309(3)
Esophageal Injury
312(1)
Assessment of Amifostine in Patients with Pelvic Tumors
312(1)
Assessment of Amifostine in Patients with Tumors at Other Sites
312(2)
Impact of Amifostine on Tumor Control and Survival
314(1)
Amifostine-Related Toxicity
314(1)
Administration of Amifostine
314(7)
Other Cytoprotectors
321(2)
Conclusion
323(1)
References
323(6)
Index 329