Muutke küpsiste eelistusi

E-raamat: Radio Access Network Slicing and Virtualization for 5G Vertical Industries

Edited by , Edited by , Edited by (National Research Council, Vancouver, Canada), Edited by
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 03-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119652458
  • Formaat - PDF+DRM
  • Hind: 128,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 03-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119652458

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Learn how radio access network (RAN) slicing allows 5G networks to adapt to a wide range of environments in this masterful resource

Radio Access Network Slicing and Virtualization for 5G Vertical Industriesprovides readers with a comprehensive and authoritative examination of crucial topics in the field of radio access network (RAN) slicing. Learn from renowned experts as they detail how this technology supports and applies to various industrial sectors, including manufacturing, entertainment, public safety, public transport, healthcare, financial services, automotive, and energy utilities.

Radio Access Network Slicing and Virtualization for 5G Vertical Industries explains how future wireless communication systems must be built to handle high degrees of heterogeneity, including different types of applications, device classes, physical environments, mobility levels, and carrier frequencies. The authors describe how RAN slicing can be utilized to adapt 5G technologies to such wide-ranging circumstances.

The book covers a wide range of topics necessary to understand RAN slicing, including:

  • Physical waveforms design
  • Multiple service signals coexistence
  • RAN slicing and virtualization
  • Applications to 5G vertical industries in a variety of environments

This book is perfect for telecom engineers and industry actors who wish to identify realistic and cost-effective concepts to support specific 5G verticals. It also belongs on the bookshelves of researchers, professors, doctoral, and postgraduate students who want to identify open issues and conduct further research.

About the Editors xiii
Preface xvii
List of Contributors
xxiii
List of Abbreviations
xxvii
Part I Waveforms and Mixed-Numerology
1(120)
1 ICI Cancellation Techniques Based on Data Repetition for OFDM Systems
3(22)
Miaowen Wen
Jun Li
Xilin Cheng
Xiang Cheng
1.1 OFDM History
3(1)
1.2 OFDM Principle
4(4)
1.2.1 Subcarrier Orthogonality
4(1)
1.2.2 Discrete Implementation
5(1)
1.2.3 OFDM in Multipath Channel
6(2)
1.3 Carrier Frequency Offset Effect
8(3)
1.3.1 Properties of ICI Coefficients
9(1)
1.3.2 Carrier-to-interference Power Ratio
9(2)
1.4 ICI Cancellation Techniques
11(2)
1.4.1 One-Path Cancellation with Mirror Mapping
11(1)
1.4.1.1 MSR Scheme
12(1)
14.12 MCSR Scheme
13(4)
1.4.2 Two-Path Cancellation with Mirror Mapping
14(1)
1.4.2.1 MCVT Scheme
15(1)
1.4.2.2 MCJT Scheme
15(1)
1.4.3 CIR Comparison
16(1)
1.5 Experiment on Sea
17(1)
1.5.1 Experiment Settings
18(3)
1.5.2 Experiment Results
21(1)
1.6 Summary
22(1)
References
23(2)
2 Filtered OFDM: An Insight into Intrinsic In-Band Interference
25(18)
Juquan Mao
Lei Zhang
Pei Xiao
2.1 Introduction
25(1)
2.1.1 Notations
26(1)
2.2 System Model for f-OFDM SISO System
26(4)
2.3 In-Band Interference Analysis and Discussion
30(4)
2.3.1 Channel Diagonalization and In-Band Interference-Free Systems
30(1)
2.3.2 In-Band Interference Power
31(1)
2.3.3 In-Band Interference Mitigation: A Practical Approach for Choosing CR Length
32(1)
2.3.4 An Alternative for In-Band Interference Mitigation: Frequency Domain Equalization (FDE)
33(1)
2.3.4.1 Linear Equalizers
33(1)
2.3.4.2 Nonlinear Equalizers
34(1)
2.4 Numerical Results
34(4)
2.4.1 Numerical Results for In-Band Interference
35(3)
2.5 Conclusion
38(1)
1.2 Appendix
38(1)
1.2.1 Derivation of zk
38(1)
2.3 Appendix
39(1)
2.3.1 Proof of 0preBeing a Strict Upper Triangle
39(1)
3.4 Appendix
39(1)
3.4.1 Proof of Property
2. A.2
39(1)
References
40(3)
3 Windowed OFDM for Mixed-Numerology 5G and Beyond Systems
43(20)
Bowen Yang
Xiaoying Zhang
Lei Zhang
Arman Farhang
Pei Xiao
Muhammad Ali Imran
3.1 Introduction
43(2)
3.2 W-OFDM System Model
45(5)
3.2.1 Single Numerology System Model
46(2)
3.2.2 System Model for Mixed Numerologies
48(2)
3.3 Inter-numerology Interference Analysis
50(4)
3.3.1 Inter-numerology Interference Analysis for Numerology 1
50(2)
3.3.2 Inter-numerology Interference Analysis for Numerology 2
52(2)
3.4 Numerical Results and Discussion
54(3)
3.5 Conclusions
57(1)
3.6 Derivation of (3.9)
57(1)
3.7 Derivations of (3.28)
58(1)
3.8 Derivations of (3.30)
59(1)
References
59(4)
4 Generalized Frequency Division Multiplexing: Unified Multicarrier Framework
63(20)
Ahmad Nimr
Zhongju Li
Mama Chafii
Gerhard Fettweis
4.1 Overview of Multicarrier Waveforms
63(7)
4.1.1 Time-Frequency Representation
64(1)
4.1.1.1 Discrete-Time Representation
65(1)
4.1.1.2 Relation to Gabor Theory
66(1)
4.1.2 GFDM As a Flexible Waveform
66(1)
4.1.2.1 GFDM with Multiple Prototype Pulses
67(1)
4.1.3 Generalized Block-Based Multicarrier
68(1)
4.1.3.1 Transmitter
69(1)
4.1.3.2 Receiver
69(1)
4.2 GFDM As a Flexible Framework
70(8)
4.2.1 GFDM Representations
71(1)
4.2.1.1 Filter Bank Representation
71(1)
4.2.1.2 Vector Representation
71(1)
4.2.1.3 2D-Block Representation
72(1)
4.2.1.4 GFDM Matrix Structure
73(1)
4.2.2 Architecture and Extended Flexibility
74(1)
4.2.2.1 Alternative Interpretation of GFDM
75(1)
4.2.2.2 Extended Flexibility
76(1)
4.2.2.3 Flexible Hardware Architecture
76(2)
4.3 GFDM for OFDM Enhancement
78(2)
4.3.1 Transmitter
78(1)
4.3.2 Receiver
79(1)
4.3.2.1 LMMSE GFDM-Based Receiver
79(1)
4.4 Conclusions
80(1)
References
80(3)
5 Filter Bank Multicarrier Modulation
83(20)
Behrouz Farhang-Boroujeny
5.1 Introduction
83(1)
5.1.1 Notations
83(1)
5.2 FBMC Methods
84(1)
5.3 Theory
84(8)
5.3.1 CMT
85(3)
5.3.2 SMT
88(4)
5.4 Prototype Filter Design
92(2)
5.4.1 Prototype Filters for Time-Invariant Channels
92(1)
5.4.2 Prototype Filters for Time-Varying Channels
93(1)
5.5 Synchronization and Tracking Methods
94(3)
5.5.1 Preamble Design
95(1)
5.5.2 Channel Tracking
96(1)
5.5.3 Timing Tracking
97(1)
5.6 Equalization
97(1)
5.7 Computational Complexity
98(1)
5.8 Applications
98(1)
References
99(4)
6 Orthogonal Time-Frequency Space Modulation: Principles and Implementation
103(18)
Arman Farhang
Behrouz Farhang-Boroujeny
6.1 Introduction
103(2)
6.2 OTFS Principles
105(2)
6.3 OFDM-Based OTFS
107(1)
6.4 Channel Impact
108(2)
6.5 Simplified Modem Structure
110(3)
6.6 Complexity Analysis
113(1)
6.7 Recent Results and Potential Research Directions
114(3)
References
117(4)
Part II RAN Slicing and 5G Vertical Industries
121(162)
7 Multi-Numerology Waveform Parameter Assignment in 5G
123(14)
Ahmet Yazar
Huseyin Arslan
7.1 Introduction
123(5)
7.1.1 Problem Definitions
125(1)
7.1.2 Literature Review
126(2)
7.2 Waveform Parameter Options
128(2)
7.3 Waveform Parameter Assignment
130(2)
7.4 Conclusion
132(1)
References
132(5)
8 Network Slicing with Spectrum Sharing
137(30)
Yue Liu
Xu Yang
Laurie Cuthbert
8.1 The Need for Spectrum Sharing
137(2)
8.2 Historical Approaches to Spectrum Sharing
139(5)
8.2.1 Classifications of Spectrum Sharing
140(1)
8.2.1.1 Orthogonality
140(1)
8.2.1.2 Sharing Rights
141(1)
8.2.1.3 Allocation of Resources
142(2)
8.3 Network Slicing in the RAN
144(2)
8.4 Radio Resource Allocation that Considers Spectrum Sharing
146(10)
8.4.1 Example Radio Resource Allocation for Sharing Through Network Slicing
147(6)
8.4.2 Other Considerations
153(3)
8.5 Isolation
156(6)
8.5.1 Example Isolation Results Using CAC
157(1)
8.5.1.1 Type A: Baseline - CAC Without Network Isolation and Without Protection for Existing Users
158(1)
8.5.1.2 Type B: Optimum Types - Bl and B2
158(1)
8.5.1.3 Type C: Without Compensation - CI and C2
159(3)
8.6 Conclusions
162(1)
Acknowledgments
163(1)
References
163(4)
9 Access Control and Handoff Policy Design for RAN Slicing
167(22)
Yao Sun
Lei Zhang
Gang Feng
Muhammad Ali Imran
9.1 A Framework of User Access Control for RAN Slicing
167(12)
9.1.1 System Model for RAN Slicing
168(2)
9.1.2 UE Association Problem Description
170(1)
9.1.3 Admission Control Mechanisms Design for RAN Slicing
170(1)
9.1.3.1 Optimal QoS AC Mechanism
171(5)
9.1.3.2 Num-AC Mechanism
176(1)
9.1.4 Experiments, Results, and Discussions
177(2)
9.2 Smart Handoff Policy Design for RAN Slicing
179(7)
9.2.1 RAN Slice Based Mobile Network Model
179(2)
9.2.2 Multi-Agent Reinforcement Learning Based Handoff Framework
181(1)
9.2.3 LESS Algorithm for Target BS and NS Selection
181(1)
9.2.3.1 Q-Value Update Policy
182(1)
9.2.3.2 Optimal Action Policy
183(1)
9.2.4 Experiment, Results, and Discussions
184(2)
9.3 Summary
186(1)
References
186(3)
10 Robust RAN Slicing
189(20)
Ruihan Wen
Gang Feng
10.1 Introduction
189(1)
10.2 Network Model
190(3)
10.2.1 Slice Failure Detection Process
190(1)
10.2.2 System Model
191(2)
10.3 Robust RAN Slicing
193(6)
10.3.1 Failure Recovery Problem Formulation
193(2)
10.3.2 Robust RAN Slicing Problem Formulation
195(1)
10.3.3 Variable Neighborhood Search Based Heuristic for Robust RAN Slicing
196(3)
10.4 Numerical Results
199(7)
10.4.1 Performance Metrics
199(1)
10.4.2 Simulation Scenarios and Settings
200(1)
10.4.3 Results
201(5)
10.5 Conclusions and Future Work
206(1)
References
206(3)
11 Flexible Function Split Over Ethernet Enabling RAN Slicing
209(12)
Ghizlane Mountaser
Toktam Mahmoodi
11.1 Flexible Functional Split Toward RAN Slicing
209(4)
11.1.1 Full Centralization and CPRI
209(1)
11.1.2 RAN Functional Split
210(3)
11.1.3 Flexible Functional Split as RAN Slicing Enabler
213(1)
11.2 Fronthaul Reliability and Slicing by Deploying Multipath at the Fronthaul
213(1)
11.2.1 Packet-Based Fronthaul
213(1)
11.2.2 Multipath Packet-Based Fronthaul for Enhancing Reliability
213(1)
11.2.3 Slicing Within Multipath Fronthaul
214(1)
11.3 Experimentation Results Evaluation of Flexible Functional Split for RAN Slicing
214(1)
11.3.1 Experimental Setup
214(1)
11.3.2 Evaluation and Discussion of the Results
215(2)
11.4 Simulation Results Analysis of Multipath Packet-Based Fronthaul for RAN Slicing
217(2)
11.4.1 Simulation System Model
217(2)
References
219(2)
12 Service-Oriented RAN Support of Network Slicing
221(18)
Wei Tan
Feng Han
Yinghao Jin
Chenchen Yang
12.1 Introduction
221(1)
12.2 General Concept and Principles
222(5)
12.2.1 Network Slicing Concepts
223(1)
12.2.2 Overall RAN Subsystem
224(1)
12.2.3 Key Principles of Network Slicing in RAN
225(2)
12.3 RAN Subsystem Deployment Scenarios
227(2)
12.4 Key Technologies to Enable Service-Oriented RAN Slicing
229(8)
12.4.1 Device Awareness of RAN Part of Network Slice
230(2)
12.4.2 Slice-Specific RAN Part of Network Slice
232(2)
12.4.3 Mission-Driven Resource Utilization, Sharing, and Aggregation
234(1)
12.4.4 Slice-Aware Connected UE Mobility
235(2)
12.4.5 Slice-Level Handlings for Idle/Inactive UEs
237(1)
12.5 Summary
237(1)
References
238(1)
13 5G Network Slicing for V2X Communications: Technologies and Enablers
239(20)
Claudia Campolo
Antonella Molinaro
Vincenzo Sciancalepore
13.1 Introduction
239(1)
13.2 Vehicular Applications
240(1)
13.3 V2X Communication Technologies
241(4)
13.3.1 The C-V2X Technology
242(1)
13.3.1.1 The PC5 Radio Interface
242(1)
13.3.1.2 The LTE-Uu Interface
242(1)
13.3.1.3 Core Network
243(1)
13.3.2 C-V2X Toward 5G
243(1)
13.3.2.1 Radio Interface
243(1)
13.3.2.2 Core Network
244(1)
13.4 Cloudification in V2X Environments
245(3)
13.4.1 The Role of MEC
245(1)
13.4.2 ETSI MEC-Based Programmable Interfaces
246(1)
13.4.3 MEC-Based Support for V2X Applications
247(1)
13.5 Transport and Tunneling Protocol for V2X
248(3)
13.5.1 GTP-U Encapsulation
248(1)
13.5.2 Segment Routing v6
248(2)
13.5.3 Scalability and Flexibility in SRv6
250(1)
13.6 Network Slicing for V2X
251(4)
13.6.1 3GPP Specifications
251(1)
13.6.2 Literature Overview
252(3)
13.7 Lessons Learnt and Guidelines
255(1)
13.7.1 Slice Mapping and Identification
255(1)
13.7.2 Multi-tenancy Management
255(1)
13.7.3 Massive Communications
255(1)
13.7.4 Transparent Mobility
256(1)
13.7.5 Isolation
256(1)
13.8 Conclusions
256(1)
References
256(3)
14 Optimizing Resource Allocation in URLLC for Real-Time Wireless Control Systems
259(24)
Bo Chang
Liying Li
Guodong Zhao
14.1 Introduction
259(2)
14.2 System Model with Latency and Reliability Constraints
261(6)
14.2.1 Wireless Control Model
262(4)
14.2.2 Wireless Communication Model
266(1)
14.3 Communication-Control Co-Design
267(3)
14.3.1 Communication Constraint
267(1)
14.3.2 Control Constraint
268(1)
14.3.3 Problem Formulation
269(1)
14.4 Optimal Resource Allocation for The Proposed Co-Design
270(3)
14.4.1 Relationship Between Control and Communication
270(1)
14.4.2 Optimal Resource Allocation
271(1)
14.4.2.1 Problem Conversion
271(1)
14.4.2.2 Problem Solution
272(1)
14.4.3 Optimal Control Convergence Rate
273(1)
14.5 Simulations Results
273(6)
14.5.1 Control Performance
274(2)
14.5.2 Communication Performance
276(3)
14.6 Conclusions
279(1)
References
279(4)
Index 283
LEI ZHANG, PhD, is Senior Lecturer at the University of Glasgow, UK. He received his PhD degree from the University of Sheffield, UK. He was a research fellow in the 5G Innovation Centre (5GIC) at the Institute of Communications (ICS), University of Surrey, UK. His research interests include wireless communication systems and networks, blockchain technology, radio access network slicing (RAN slicing), Internet of Things (IoT), multi-antenna signal processing, MIMO systems, and many more.

ARMAN FARHANG, PhD, received his PhD from the Trinity College in Dublin, Ireland. He is currently an Assistant Professor in the Department of Electronic Engineering at Maynooth University, Ireland. His research interests and activities are in the broad area of signal processing for communications, waveform design, signal processing for multiuser and multiple antenna systems.

GANG FENG, PhD, is a Professor at the University of Electronic Science and Technology of China (UESTC), China. He received his MEng degree in Electronic Engineering from UESTC and his PhD in information engineering from the Chinese University of Hong Kong.

OLUWAKAYODE ONIRETI, PhD, is a Lecturer at the University of Glasgow, UK. He received an MSc degree in mobile and satellite communication and a PhD in Electronics Engineering from the University of Surrey, Guildford, UK.