Muutke küpsiste eelistusi

E-raamat: Radio Propagation in the Urban Scenario

  • Formaat: 270 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818579
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 270 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818579

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This practical book provides fundamentals of electromagnetic wave propagation and its unique application for the design of mobile wireless systems in complex urban environments. It supplies telecommunication engineers with the proper theoretical and practical tools to: plan radio coverage in cellular networks; design a radio link; predict connectivity in a wireless network and ensure that the system to be designed fulfills regulations on exposure of general public to electromagnetic fields.

 

Youll understand the latest propagation models and be equipped to address the challenges facing wireless propagation for the most recent 5G mobile systems, including how to cope with new propagation scenarios/frequencies in 5G wireless channel modelling. Youll also find unique coverage of the problems of human exposure to electromagnetic fields and the corresponding international and national regulations, including the most recent ICNIRP guidelines.

 

The book brings theory, algorithms, and applications into focus with some practical examples. Specific attention is devoted to laying the mathematical foundations of the asymptotic techniques that are presented; of the propagation over a flat and spherical Earth; and also of the propagation in complex environment in order to provide a cohesive exposition of the underlying principles.

 

With its strong theoretical background on fundamentals of electromagnetic propagation along with an application-oriented approach, this is a must-have book for researchers working on applied electromagnetics and engineers working on wireless network planning at an advanced level. It is also rich in details and clear, making it an excellent textbook for advanced and graduate-level students.
Preface xv
1 Introduction
1(8)
1.1 Historical Notes
1(1)
1.2 Electromagnetic Spectrum
2(3)
1.3 Radio, Television, Mobile Telephony, and Wireless Networks
5(2)
1.4 Challenges in the (Electromagnetic) Design of Modern Wireless Networks
7(1)
References
8(1)
2 Fundamentals of Electromagnetic Propagation and Radiation
9(64)
2.1 Maxwell's Equations
9(8)
2.1.1 Maxwell's Equations in the Frequency Domain
13(2)
2.1.2 Sinusoidal Vector Fields, Phasor Vectors, and Polarization
15(2)
2.2 Electromagnetic Properties of Materials
17(12)
2.2.1 Power Losses in Materials, Power Flux, and Energy Conservation
19(2)
2.2.2 Dielectric Materials
21(2)
2.2.3 Conductors
23(2)
2.2.4 Perfect Electric Conductors (PECs)
25(1)
2.2.5 Plasma
26(1)
2.2.6 Boundary Between Two Media and Boundary Condition on PEC's Surface
27(2)
2.3 Plane-Wave Propagation, Reflection, and Transmission
29(19)
2.3.1 Homogeneous Plane Waves
31(1)
2.3.2 Nonhomogeneous Plane Waves
32(1)
2.3.3 Plane Waves for Arbitrarily Time-Varying Fields
33(1)
2.3.4 Narrowband Signals and Group Velocity
34(2)
2.3.5 Plane Wave Reflection and Transmission at a Plane Boundary
36(7)
2.3.6 Plane Wave Propagation in Layered Media
43(4)
2.3.7 Plane Wave Propagation in Anisotropic Media
47(1)
2.4 Radiation
48(8)
2.4.1 Elementary Source
50(2)
2.4.2 Radiation from an Arbitrary Current Distribution
52(1)
2.4.3 Far Field
53(1)
2.4.4 Equivalent Problems and Magnetic Sources
54(2)
2.5 Transmitting and Receiving Antennas
56(11)
2.5.1 Parameters of a Transmitting Antenna
57(3)
2.5.2 Parameters of a Receiving Antenna
60(1)
2.5.3 Some Commonly Used Antennas
61(2)
2.5.4 Arrays of Antennas, Phased Arrays, and Beamforming
63(4)
2.6 Friis Formula for Free-Space Radio Links
67(4)
2.6.1 Antenna Noise Temperature and Receiver Noise Figure
68(2)
2.6.2 Example: Downlink in a Satellite Communication System
70(1)
References
71(2)
3 Asymptotic Techniques
73(46)
3.1 Geometrical Optics
74(12)
3.1.1 Fermat's Principle
78(1)
3.1.2 GO in Homogeneous Media
79(2)
3.1.3 Interface Between Homogeneous Media: Reflected and Transmitted Ray Congruences
81(2)
3.1.4 Example of Inhomogeneous Media: Stratified Medium
83(3)
3.2 Fresnel Ellipsoids
86(4)
3.3 Stationary Phase Method
90(6)
3.3.1 Finite Integration Interval
92(2)
3.3.2 Transition Function
94(2)
3.4 Diffraction
96(9)
3.4.1 Stationary Phase Point Contribution: The GO Field
99(2)
3.4.2 End-Point Contribution: The Edge Diffracted Field
101(4)
3.5 Geometrical Theory of Diffraction and Its Uniform Extension
105(5)
3.5.1 Diffraction from a Perfectly Conducting Wedge: GTD and UTD Solutions
105(4)
3.5.2 Lossy Dielectric Wedge
109(1)
3.6 Rough-Surface Scattering
110(7)
3.6.1 Mean Value of the Scattered Field
114(2)
3.6.2 Variance of the Scattered Field
116(1)
References
117(2)
4 Propagation Over a Flat or Spherical Earth
119(32)
4.1 Ground-Wave Propagation and Two-Ray Model
120(8)
4.1.1 Example: Link Between Two Walkie-Talkies
126(1)
4.1.2 Effect of Surface Roughness
127(1)
4.2 Effect of the Earth's Curvature
128(2)
4.3 Atmospheric Effect: Ray Curvature and Effective Earth Radius
130(3)
4.3.1 Example: Link Between Two Walkie-Talkies, Effects of Earth Curvature, and Atmospheric Refraction
132(1)
4.3.2 Atmospheric Ducting and Tropospheric Scattering
132(1)
4.4 Atmospheric Attenuation: Clear Air, Fog, Rain
133(7)
4.4.1 Attenuation by Rain, Fog, and Snow
134(6)
4.5 Ionosphere
140(10)
4.5.1 Ionospheric Reflection and Sky Wave
141(2)
4.5.2 Effect of the Earth's Magnetic Field on Ionospheric Propagation
143(6)
4.5.3 Ionosphere and Electromagnetic Wave Propagation: Summary
149(1)
References
150(1)
5 Propagation in Complex Environments
151(22)
5.1 LOS and Non-LOS (NLOS) Propagation
152(2)
5.1.1 Reflection on and Transmission Through a Homogeneous Wall
153(1)
5.2 Multipath
154(8)
5.2.1 Narrowband Characterization of the Multipath Channel
155(4)
5.2.2 Wideband Characterization of the Multipath Channel
159(3)
5.3 Fading
162(5)
5.3.1 NLOS: Rayleigh Fading
163(1)
5.3.2 LOS: Rician Fading
164(2)
5.3.3 Slow Fading: Lognormal Distribution
166(1)
5.3.4 Example: Outage Probability in Rayleigh Fading
166(1)
5.4 Delay Spread
167(4)
5.4.1 Example: Delay Spread in Urban Areas and Mobile Telephone Systems
170(1)
References
171(2)
6 Propagation in Urban Areas
173(24)
6.1 Urban Area Propagation Scenarios: Outdoor and Indoor
174(2)
6.2 Empirical Propagation Models
176(11)
6.2.1 Outdoor
177(6)
6.2.2 Indoor
183(2)
6.2.3 Example: Downlink in a 4G LTE Mobile Phone System
185(1)
6.2.4 Coverage Area and Location Probability
186(1)
6.3 Urban Canyon as a Roofless Waveguide
187(3)
6.4 Ray-Tracing Methods
190(5)
References
195(2)
7 Ray-Tracing Tool Example
197(18)
7.1 Vertical-Plane Launching Implementation
198(8)
7.1.1 Ray Definition
199(1)
7.1.2 Space Scanning
200(3)
7.1.3 Electromagnetic Modeling
203(1)
7.1.4 Coherent Versus Incoherent Summation
204(2)
7.2 Input, Output, and Processing Time
206(5)
7.2.1 Input
206(1)
7.2.2 Output
206(2)
7.2.3 Processing Time
208(2)
7.2.4 Advantages and Limits
210(1)
7.3 Measurement Issues
211(1)
7.4 Comparison of Solver Predictions and Measured Data
211(3)
References
214(1)
8 New Propagation Scenarios in 5G Telecommunication Systems
215(22)
8.1 Description of 5G Networks and Expected Performance
216(4)
8.2 Millimeter-Wave Propagation
220(10)
8.2.1 Empirical Channel Models
224(3)
8.2.2 Ray Tracing
227(1)
8.2.3 Example: Downlink in a High-Band 5G Wireless System
228(2)
8.3 Beamforming
230(4)
References
234(3)
9 Regulations on the Exposure of the General Public to Electromagnetic Fields
237(20)
9.1 ICNIRP Guidelines
238(10)
9.1.1 Basic Restrictions
240(4)
9.1.2 Reference Levels
244(4)
9.2 IEEE Standard
248(4)
9.2.1 DRLs
249(1)
9.2.2 ERLs
250(2)
9.3 Exposure Limits in Countries Across the World
252(3)
9.3.1 Exposure Limits in Italy
253(1)
9.3.2 Exposure Limits in the United States
254(1)
References
255(2)
10 Conclusion and Future Perspectives
257(20)
References
259(2)
A Vector Analysis
261(1)
A.1 Vector Multiplications
261(1)
A.2 Differential Relationships
261(1)
A.3 Integral Relationships
262(1)
A.4 Cartesian Coordinates
262(1)
A.5 Cylindrical Coordinates
263(1)
A.6 Spherical Coordinates
264(1)
A.7 Matrices
265(2)
B Dirac Pulse
267(4)
C Useful Integrals
271(2)
D Derivation of the Transition Function for the Uniform Geometrical Theory of Diffraction
273(4)
About the Authors 277(2)
Index 279