Muutke küpsiste eelistusi

E-raamat: Radioactive Air Sampling Methods

Edited by (National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA), Edited by (Pfizer, Inc., Pearl River, New York, USA)
  • Formaat: 600 pages
  • Ilmumisaeg: 18-Oct-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420009682
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 600 pages
  • Ilmumisaeg: 18-Oct-2010
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420009682

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment.

Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used to assess airborne radioactive emergencies.

The book includes a comprehensive series of air sampling methods for commonly encountered radioactive isotopes in the industrial environment that detail the steps to conducting a proper air sampling study. With coverage of fundamental air sampling techniques and practical knowledge, the book provides insight into the contemporary thinking of experts, the maturity of the field, and its deep literature base. Building a bridge between the science behind air sampling and its practice, it supplies the know-how required to achieve technically rigorous air sampling data.

Arvustused

"I find this book very interesting and very useful."Adan M. Pena, HEALTH PHYSICS, DEC 2011, VOL 101, #6

Preface vii
Acknowledgments ix
Editors xi
Contributors xiii
Method Authors, Reviewers, and Editors xv
Technical Reviewers xvii
PART I Objectives, Safety Issues, Standards, and a Life-Cycle Approach for Sampling Airborne Radioactivity
Chapter 1 Objectives for Sampling Airborne Radioactiviy
3(8)
Mark D. Hoover
George J. Newton
Mark L. Maiello
Introduction
3(1)
Specific Sampling Objectives
3(5)
Basic Aerosol Characterization
5(1)
Worker Health Protection
5(1)
Environmental Monitoring
6(1)
Process Quality Assurance and Control
6(1)
Emergency Preparedness and Response
6(1)
Demonstration of Compliance
7(1)
Research
8(1)
Conclusion
8(1)
References
8(3)
Chapter 2 Radiation Safety Issues for Air Sampling
11(10)
Mark L. Maiello
Mark D. Hoover
Introduction
11(1)
Fundamental Program Elements
11(7)
Regulatory Concerns
12(1)
Training
12(1)
Contamination Control
13(3)
Personal Protection
16(1)
Dosimetry
17(1)
Some Special Issues for Sampling and Handling Plutonium
17(1)
Conclusion
18(1)
References
19(2)
Chapter 3 Standards, Guidelines, Regulations, and Recommendations for Measuring Airborne Radioactivity
21(22)
Mark D. Hoover
Morgan Cox
Cynthia G. Jones
Liliane Grivaud
Michelle L. Johnson
Mark L. Maiello
George J. Newton
Introduction
21(2)
International Standards
23(9)
The International Electrotechnical Commission
24(8)
The International Organization for Standardization
32(1)
Regional International Standards
32(1)
National Standards
32(3)
U.S. National Standards Organizations
33(1)
Standards of Interest from Other ANSI-Accredited Organizations
34(1)
The National Standards Organizations in France
34(1)
Government Regulations and Guidance
35(4)
U.S. Law---National Technology Transfer and Advancement Act (PL 104-113)
35(1)
U.S. Radiation Protection Regulations and Guidance
35(2)
Other Recommendations and Guidance
37(2)
Perspectives on the Nature of Regulations
39(1)
Conclusion
39(1)
References
40(3)
Chapter 4 A Life-Cycle Approach to Development and Application of Air Sampling Methods and Instrumentation
43(12)
Mark D. Hoover
Morgan Cox
Introduction
43(1)
Life-Cycle Steps
44(7)
Mission Evaluation
44(1)
Research and Development
45(3)
Prototype Testing
48(1)
Type Testing
48(1)
Production Control Testing
49(1)
Training
49(1)
Acceptance Testing
49(1)
Initial Calibration
49(1)
Functional Checks
50(1)
Operational Experience
50(1)
Maintenance and Recalibration
50(1)
Periodic Performance Testing
51(1)
Benefits of Harmonization
51(1)
Harmonization across the Life-Cycle Process
51(1)
Harmonization among Instrument Types or Classes
51(1)
Harmonization of Life-Cycle Processes in a Broader Context
52(1)
Conclusion
52(1)
References
52(3)
PART II Fundamentals of Radioactivity and Radioactive Aerosols
Chapter 5 Review of Radioactivity, Detection, and Measurement
55(22)
Mark L. Maiello
Introduction
55(1)
Radioactivity
55(6)
Radioactive Decay and Radiation
55(6)
Radiation Detection
61(8)
Review of Radiation Detection Systems
61(8)
Counting Statistics
69(5)
Significant Figures and Rounding, Negative and Zero Data
69(1)
Error Terms
69(2)
Detection Limits
71(2)
Quality Assurance
73(1)
References
74(3)
Chapter 6 The Physics of Aerosols
77(58)
Erno Sajo
Introduction
77(1)
Aerosol Size Distributions
78(6)
Aerosol Characterization
79(2)
Lognormal Distribution
81(1)
The Junge Distribution
82(1)
The Gamma Distribution
82(1)
Multimodal Distributions
83(1)
Particle Motion in Gas
84(18)
Macroscopic and Microscopic Fluid Properties
84(2)
The Mean Free Path
86(2)
Diffusion of Particles and Molecules
88(5)
Drag Force and Cunningham's Slip Correction
93(3)
Nonspherical Particles
96(6)
Aerosol Transport
102(13)
Moments of the Particle Size Spectrum
102(4)
Aerosol Phase Space
106(4)
Particle Deposition and the General Dynamic Equation of Aerosol Transport
110(5)
Coagulation
115(9)
The Sectional Method of Solving the Coagulation Problem
117(3)
The Method of Moments
120(4)
Coagulation Kernels
124(8)
Brownian Coagulation---Diffusion Regime
124(1)
Brownian Coagulation---Slip Flow Regime
125(1)
Brownian Coagulation---Free Molecular Flow Regime
126(1)
Fuchs' Method for All Brownian Regimes
127(1)
Gravitational Coagulation
127(2)
Simultaneous Brownian and Gravitational Coagulation
129(1)
Coagulation by Turbulent Diffusion
130(2)
Simultaneous Coagulation Mechanisms
132(1)
References
132(3)
Chapter 7 Behavior of Radioactive Aerosols and Gases
135(22)
Mark D. Hoover
Introduction
135(1)
Physical Forms of Airborne Radioactive Materials
136(2)
Dusts
136(1)
Fumes
136(1)
Smokes
136(1)
Mists
137(1)
Vapors
137(1)
Gases
137(1)
Multiple or Mixed Physical Forms
137(1)
Factors Affecting the Dispersion and Disposition of Aerosols and Gases
138(5)
Aerodynamic Equivalent Diameter
139(2)
Thermodynamic Equivalent Diameter
141(1)
Comparison of Aerodynamic and Thermodynamic Effects as a Function of Particle Size
141(1)
Relative Importance of Resuspension from Surfaces
142(1)
Understanding and Interpreting the Lognormal Aspects of Airborne Particle Size Distributions
143(4)
Modeling Exposure Pathways and Their Significance
147(5)
A Key-Parameter Equation for Exposure Modeling
148(3)
Monte Carlo Simulation of Uncertainty for Prospective and Retrospective Assessments of Airborne Radioactivity
151(1)
An Example Monte Carlo Estimation of Radiation Dose to a Worker from an Accidental Release of Plutonium from a Radioactive Waste Drum
152(2)
Influence of Initiating-Event Probabilities and Other Conditional Probabilities for Accident Consequences
152(2)
Conclusion
154
References
15(142)
Chapter 8 Filtration
157(24)
Mark D. Hoover
Introduction
157(1)
Filtration Fundamentals
158(2)
Air Filters are not Sieves
158(1)
"Pore Size" is Only a Guide
158(2)
Filters Require Proper Strength, Support, and Sealing
160(1)
Selection of Filter Media for Air Sampling
160(10)
Physical Characteristics of Filter Media
160(4)
Pressure Drop Characteristics
164(1)
Particle Collection Efficiency
165(1)
Radiation Shielding in the Filter Matrix
166(1)
Filters for α-Spectroscopy
166(2)
Considerations of "Front" and "Back" Filter Surface
168(1)
Analytical and Radiochemistry Issues
169(1)
Transportation and Storage of Filter Samples
169(1)
Justifying a Change in the Selection of Filter Media
169(1)
Avoiding Unexpected Changes in Filter Media
170(1)
Filtration for Nuclear Air and Gas Treatment
170(1)
Building Filtration and Air Cleaning
171(2)
Filtration Considerations
172(1)
Air-Cleaning Considerations
173(1)
Filtration for Respiratory Protection
173(1)
Legal Requirements for Respiratory Protection
174(4)
APFs for Different Types of Respiratory Protection
176(1)
Classes of Filter Media for Air-Purifying Respirators
176(1)
Clarification into Dust Masks, Surgical Masks, and Other Media
177(1)
Conclusion
178(1)
References
178(3)
Chapter 9 Behavior of Radon and its Decay Products
181(1)
Phillip Jenkins
Introduction
181(1)
Uranium Decay Series and 222Rn
182(11)
Solution to Decay Equations Using a Recurrence Formula
184(1)
Potential α-Energy Concentration
185(1)
Radon Sample in a Closed Container or Defined Volume of Air
186(1)
Effect of Deposition on Radon Progeny Concentration
187(3)
Radon Progeny Buildup on a Filter
190(3)
Thorium Decay Series and 220Rn
193(8)
Solution to Decay Equations Using a Recurrence Formula
194(2)
Potential α-Energy Concentration
196(1)
Thoron Sample in a Closed Container or Defined Volume of Air
197(1)
Effect of Deposition on Thoron Progeny Concentration
198(1)
Thoron Progeny Buildup on a Filter
198(3)
Actinium Decay Series and 219Rn
201(7)
Solution to Decay Equations Using a Recurrence Formula
202(2)
Potential α-Energy Concentration
204(1)
Actinon Sample in a Closed Container or Defined Volume of Air
204(1)
Effect of Deposition on Actinon Progeny Activities
204(1)
Actinon Progeny Buildup on a Filter
205(3)
References
208
Chapter 10 Internal Dosimetry of Inhaled Radioactive Aerosols
181(40)
Charles A. Potter
Introduction
209(1)
Morphology and Deposition
210(3)
Clearance and Absorption
213(1)
Dose to the Lung
214(1)
Gastrointestinal Tract
215(1)
Systemic Metabolism
216(1)
Derived Air Concentration
217(1)
Summary
218(1)
References
218(3)
PART III Fundamentals of Sampling System Design and Operation for Airborne Radioactivity
Chapter 11 Basic Air Sampling Equipment
221(4)
Mark L. Maiello
Introduction
221(1)
Components of the Sampling Train
222(20)
Inlet Port
222(1)
Filter Holders
223(1)
Bypass Leakage
223(1)
Electrostatic Losses
224(1)
Tubing
224(1)
Characteristics
224(1)
Wall Losses
224(1)
Contraction Fittings
225(1)
Flow Measurement
226(1)
Rotameters
226(4)
Mass Flow Meters
230(2)
Critical Orifices and Venturi Meters
232(1)
Pumps
233(1)
Introduction
233(1)
Terminology
234(1)
Pump Characteristics
234(1)
Types of Pumps
235(1)
Rotary Vane Pumps
236(1)
Gear Pumps
237(1)
Lobe Pumps
237(1)
Diaphragm Pumps
237(2)
Linear Pumps
239(1)
Piston Pumps
239(1)
Rocking Piston Pumps
239(1)
Oil versus Oil-Less Pumps
239(1)
Miniature Pumps
240(1)
Choice of Pumps
240(1)
Backpressure
240(2)
Pulsation Control
242(1)
References
242
Chapter 12 Calibration of Air Samplers and Monitors
225(46)
James T. Voss
Jeffrey J. Whicker
Introduction
246(1)
General Calibration Procedures
246(6)
Calibration of Radiation Detector Systems
246(1)
Precalibration Inspection
246(1)
Precalibration Electronic Testing
247(1)
Calibration of Radiation Detectors with Radioactive Reference Sources
247(2)
Calibration of Air Sampling Flow Rates
249(3)
Additional Important Considerations
252(6)
Traceability
252(1)
Considerations for Environmental Conditions
252(2)
Uncertainty
254(1)
Auditability
255(1)
Quality Assurance Program
256(2)
Conclusion
258(1)
References
258(1)
Additional Sources of Information
258(2)
Appendix A Generic Calibration Procedure
260(4)
James T. Voss
Jeffrey J. Whicker
Purpose
260(1)
Scope
260(1)
Hazard Analysis
260(1)
Identified Hazards and Mitigation
260(1)
References
260(1)
Equipment
260(1)
Procedure
260(1)
Inspection and Repair
260(1)
Electrical Testing
261(1)
Pulser Calibrations (Useful for Some Count Rate-Based CAMs)
261(1)
Efficiency Calibration (Detector Calibration)
261(1)
Performance (Alarm) Check
261(1)
Flow Calibration
262(1)
Documentation
262(1)
Example Calibration Record
262(2)
Appendix B Multiple-Frame-of-Reference Method for Rotameter Correction Factors
264(6)
Mark D. Hoover
Introduction and Objectives of the Method
264(1)
Operation
265(1)
Frames of Reference
265(1)
The Rotameter Equation
266(1)
The Ideal Gas Law
266(1)
The Scale Factor Equation
267(2)
Example Calculations
269(1)
Other Influences
270(1)
Recommendations to Air Sampling Practitioners
270(1)
References
270(1)
Chapter 13 Principles of Air Sampler Placement in the Workplace
271(14)
Jeffrey J. Whicker
Background
271(1)
Aerosol and Gas Transport is Dominated by Ventilation-Induced Airflow
272(1)
Airflow Studies for Testing Ventilation and Sampler Placement
273(1)
Conducting Airflow Studies for Improved Air Quality
274(2)
Conducting Airflow Studies for Sampler Placement
276(4)
Evaluation of Placement of Retrospective Air Samplers
278(1)
Evaluation of Placement of Continuous Air Monitors
278(1)
Optimization of Air Sampling and Monitor Placement
279(1)
Further Considerations for Room Airflow Testing
280(2)
Representative Facility Conditions
280(1)
Representative Aerosol Tracer Release
280(2)
Conclusions
282(1)
References
282(3)
Chapter 14 The Practice of Continuous Air Monitoring for Alpha-Emitting Radionuclides
285(30)
John C. Rodgers
Overview of the Practice
285(3)
Application
288(2)
Contributing Factors to CAM Sensitivity
290(7)
Sampling Rate and Placement
290(1)
Interference from Radon and Progeny
291(2)
Deposition on a Filter
293(1)
Decision Level and the Background Correction Algorithm
294(3)
Interference Effects and their Control
297(1)
Precision, Accuracy, and Bias (for α-CAM Alarms)
298(7)
Apparatus Description: Room CAMs and Personal Lapel CAMs
305(2)
Alpha-CAM Placement in the Workplace
307(1)
Calibration and Gain Control
308(1)
Calculation of Exposure in DAC-h
309(1)
Setting and Testing CAM Alarm Levels
310(1)
Summary
311(1)
References
312(3)
Chapter 15 Principles of Sampling Airborne Radioactivity from Stacks
315(26)
John Glissmeyer
Introduction
315(1)
Probe Placement
316(11)
General
316(1)
Mixing
316(1)
Mixing Criteria
317(1)
Mixing Demonstration Method
318(1)
Configurations Tested
318(6)
Use of Previously Tested Configurations or Scale Models
324(1)
Generic Mixing Tests
324(3)
Sampling Train
327(5)
Nozzles
327(1)
Alignment
328(1)
Isokinetic Concept
328(1)
Transmission Ratio
329(2)
Modeling Aspiration Efficiency
331(1)
Transport in the Smapling System
332(3)
Straight Tubes
333(2)
Bends
335(1)
Sample Collection
335(1)
Sample Controls
336(2)
Stack Flow Measurement
336(1)
Sample Flow Measurement
337(1)
Leak Tightness
337(1)
Materials
338(1)
References
338(3)
Chapter 16 Methods for Comprehensive Characterization of Radioactive Aerosols A Graded Approach
341(16)
Mark D. Hoover
Introduction
341(1)
Hierarchy of a Graded Approach
342(2)
Initial Screening and Detection
342(1)
Comprehensive Characterization and Assessment
343(1)
Routine Monitoring and Control
343(1)
Methods for Comprehensive Aerosol Characterization
344(5)
Optical Particle Counting
344(3)
Particle Collection for Microscopy
347(1)
Filtration
347(1)
Inertial Sampling
347(1)
Measurement of Electrical Properties
347(1)
Volumetric Grab Samples, Impingers, Cold Traps, and Adsorbers
348(1)
Analytical Chemical Techniques
348(1)
Special Techniques for Radioactive Aerosols
349(2)
Detection of Individual Particles by Autoradiography
349(1)
Particle Solubility Measurement to Infer Biological Behavior
349(1)
Density Measurement by Isopycnic Gradient Ultracentrifugation
350(1)
Surface Area Measurement by 85Kr Adsorption
351(1)
Conclusions
351(1)
References
351(6)
PART IV Nonroutine Radioactive Air Sampling
Chapter 17 Emergency Situation Air Sampling
357(12)
Robert B. Hayes
Background and Introduction
357(1)
Plume Measurement
358(2)
Measurement at the Source
358(1)
Plume Measurements
358(1)
Resuspension Measurements
359(1)
Current Guidance on Emergency Response Air Monitoring Procedures
360(1)
Anthropogenic and Natural Radioactivity Discrimination
360(1)
References
360(2)
Appendix: First Responder Radiological Monitoring
362(7)
Thomas F. O'Connell
Stephen P. Clendenin
Initial Incident Response
362(1)
First Responder Radiation Hazard Assessment
363(2)
Stay Time
365(1)
Electronic Dosimeter Alarm Set Points
365(2)
References
367(2)
Chapter 18 Monitoring Nuclear Fallout
369(20)
Harold L. Beck
Introduction
369(1)
What is Fallout?
369(2)
Fallout Production and Transport Mechanisms
371(3)
Radioactive Composition of Fallout
374(2)
Effects of Meteorology on Fallout
376(2)
Detecting Fallout in the Atmosphere by Sampling Air or by Measuring the Amount of Fallout Actually Deposited on the Ground
378(1)
Summary of Historical Fallout Monitoring Programs and Current Techniques
379(6)
Sampling and Analyzing Air for Fallout
385(2)
Summary
387(1)
References
387(2)
PART V Example Air Sampling Methods for Airborne Radioactivity
Introduction to the Methods
389(2)
Mark L. Maiello
Mark D. Hoover
Method 1 Determination of the Gross Alpha-Radioactivity Content of the Atmosphere
391(8)
1 Principle of the Method
391(1)
2 Range and Sensitivity
391(1)
3 Interferences
392(1)
4 Advantages/Disadvantages
393(1)
5 Precision and Accuracy
393(1)
6 Apparatus
394(1)
7 Reagents
395(1)
8 Procedure
395(1)
9 Calibration and Standards
395(1)
10 Effects of Storage
396(1)
11 Calculation of Concentration
396(2)
12 Cautions
398(1)
References
398(1)
Method 2 Determination of the Gross Beta-Radioactivity Content of the Atmosphere
399(8)
1 Principle of Method
399(1)
2 Range and Sensitivity
399(1)
3 Interferences
400(1)
4 Advantages/Disadvantages
400(1)
5 Precision and Accuracy
401(1)
6 Apparatus
401(1)
7 Reagents
402(1)
8 Procedure
402(1)
9 Calibration and Standards
403(1)
10 Effects of Storage
403(1)
11 Calculation of Concentration
403(2)
12 Cautions
405(2)
References
405(2)
Method 3 Determination of the Tritiated Water Vapor Content of the Atmosphere
407(12)
1 Introduction
407(1)
2 Principle of the Method
408(1)
3 Range and Sensitivity
409(1)
4 Interferences
410(1)
5 Advantages/Disadvantages
410(1)
6 Precision and Accuracy
411(1)
7 Apparatus
411(1)
8 Reagents
411(1)
9 Procedure
412(1)
10 Calibration
412(2)
11 Calculations
414(1)
12 Effects of Storage
415(1)
13 Cautions
415(4)
References
416(3)
Method 4 Determination of the Elemental Tritium Content of the Atmosphere
419(6)
1 Principle of the Method
419(1)
2 Range and Sensitivity
420(1)
3 Interferences
420(1)
4 Advantages/Disadvantages
420(1)
5 Precision and Accuracy
420(1)
6 Apparatus
420(1)
7 Reagents
421(1)
8 Procedure
421(1)
9 Calibration
422(1)
10 Calculations
422(1)
11 Effects of Storage
423(1)
12 Cautions
423(2)
References
424(1)
Method 5 Determination of Carbon-14 in Air
425(10)
1 Introduction
425(1)
2 Principle of the Method
425(1)
3 Sensitivity and Range
426(1)
4 Interference
426(1)
5 Advantages/Disadvantages
427(1)
6 Precision and Accuracy
427(1)
7 Apparatus
428(1)
8 Reagents
428(1)
9 Procedure
428(1)
10 Calibration
429(1)
11 Calculation
430(2)
12 Effect of Storage
432(1)
13 Cautions
432(3)
References
432(3)
Method 6 Determination of the Iodine-131 Content of the Atmosphere
435(12)
1 Principle of the Method
435(1)
2 Sensitivity and Range
436(1)
3 Interferences
436(1)
4 Advantages/Disadvantages
437(1)
5 Precision and Accuracy
438(1)
6 Apparatus
438(1)
7 Reagents (Sampling Media)
438(1)
8 Procedure
439(1)
9 Calibration
440(2)
10 Calculation
442(2)
11 Effect of Storage
444(1)
12 Cautions
444(3)
References
444(3)
Method 7 Sampling Air for Argon-41, Krypton-85, and Other Gamma-Emitting Radioactive Gases Using Gamma-Spectroscopy
447(10)
1 Principle of the Method
447(1)
2 Range and Sensitivity
448(1)
3 Interferences
448(1)
4 Advantages and Disadvantages
448(1)
5 Precision and Accuracy
449(1)
6 Apparatus
449(2)
7 Reagents
451(1)
8 Procedure
451(1)
9 Calibration and Standards
452(1)
10 Calculations
453(1)
11 Effects of Storage
454(1)
12 Cautions
455(2)
References
455(2)
Method 8 Determination of the 222Rn Content of the Atmosphere
457(24)
1 Introduction
457(2)
2 Method Summaries
459(2)
3 Cautions
461(20)
Part A Measurement of Airborne 222Rn Decay Products by Filter Paper Collection and α-Activity Detection (Thomas Method or Modified Tsivoglou Method)
461(3)
Part B Determination of Airborne 222Rn by Its Passive Adsorption on Activated Charcoal
464(3)
Part C Measurement of Airborne 222Rn by Counting Damage Tracks Caused by 222Rn and Progeny α-Particles on Special Plastic Film
467(1)
Part D Determination of Airborne 222Rn by α-Activity Measurement Using Ionization Chambers
468(3)
Part E Measurement of Airborne 222Rn by Grab-Sample Collection and α-Activity Measurement Using Scintillation Cells and Photomultiplier Tubes
471(3)
Part F Measurement of 222Rn by Electrostatic Precipitation and α-Energy Spectral Analysis Using a Solid State (Passive Ion-Implanted Planar Silicon) Detector
474(5)
References
479(2)
Method 9 A Procedure for Continuous Air Monitoring of Plutonium
481(16)
1 Principle of the Method
481(1)
2 Range and Sensitivity
482(1)
3 Interferences
483(1)
4 Precision and Accuracy
484(1)
5 Apparatus
485(1)
6 Reagents
485(1)
7 Procedure
485(1)
8 Calibration and Standards
486(1)
9 Calculations
487(1)
10 Effects of Storage
487(1)
11 Cautions
487(10)
References
488(2)
Appendix: Determination of False Alarm Rate, Acceptable Alarm Set Point, and Alarm Response Time for α-Continuous Air Monitors
490(7)
Method 10 Personal Air Sampling for Particulate Radioactivity
497(8)
1 Principle of the Method
497(1)
2 Sensitivity and Range
498(1)
3 Interferences
498(1)
4 Precision and Accuracy
499(1)
5 Apparatus
500(1)
6 Reagents
500(1)
7 Procedure
500(1)
8 Calibration
501(1)
9 Calculations
501(1)
10 Effect of Storage
502(1)
11 Cautions
502(3)
References
502(3)
Method 11 Real-Time Breathing Zone Monitoring for Personal Respiratory Protection
505(6)
1 Principle of the Method
505(1)
2 Sensitivity and Range
506(1)
3 Interferences
506(1)
4 Precision and Accuracy
507(1)
5 Apparatus
507(1)
6 Reagents
507(1)
7 Procedure
507(1)
8 Effect of Storage
508(1)
9 Cautions
508(3)
References
509(2)
Appendix: Radionuclide Characteristics
Mark L. Maiello
Selected Radionuclides
511(1)
Abbreviations and Definitions
512(1)
Dosimetry
512(1)
Terminology
512(1)
Example of ALI Calculation
513(1)
References
513(2)
Tritium (3 1 H)
515(2)
Carbon-14 (14 6 C)
517(2)
Argon-41 (41 18 Ar)
519(2)
Krypton-85 (85m 36 Kr and 85 36 Kr)
521(2)
Iodine-131 (131 53 I)
523(2)
Xenon-133 (133m 54 Xe and 133 54 Xe)
525(3)
Radon-222 (222 86 Rn) and Progeny
528(2)
Polonium-218 (218 84 Po)
530(2)
Lead-214 (214 82 Pb)
532(1)
Bismuth-214 (214 83 Bi)
533(2)
Polonium-214 (214 84 Po)
535(1)
Lead-210 (210 82 Pb)
536(2)
Plutonium (238 94 Pu)
538(2)
Plutonium (239 94 Pu)
540(3)
Glossary 543(20)
Mark L. Maiello
Morgan Cox
Index 563
Mark L. Maiello, Mark D. Hoover