Muutke küpsiste eelistusi

E-raamat: Random Effect and Latent Variable Model Selection

Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Statistics 192
  • Ilmumisaeg: 18-Mar-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387767215
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Statistics 192
  • Ilmumisaeg: 18-Mar-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387767215
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Random effects and latent variable models are broadly used in analyses of multivariate data. These models can accommodate high dimensional data having a variety of measurement scales. Methods for model selection and comparison are needed in conducting hypothesis tests and in building sparse predictive models. However, classical methods for model comparison are not well justified in such settings. This book presents state of the art methods for accommodating model uncertainty in random effects and latent variable models. It will appeal to students, applied data analysts, and experienced researchers. The chapters are based on the contributors' research, with mathematical details minimized using applications-motivated descriptions.The first part of the book focuses on frequentist likelihood ratio and score tests for zero variance components. Contributors include Xihong Lin, Daowen Zhang and Ciprian Crainiceanu. The second part focuses on Bayesian methods for random effects selection in linear mixed effects and generalized linear mixed models. Contributors include David Dunson and collaborators Bo Cai and Saki Kinney. The final part focuses on structural equation models, with Peter Bentler and Jiajuan Liang presenting a frequentist approach, Sik-Yum Lee and Xin-Yuan Song presenting a Bayesian approach based on path sampling, and Joyee Ghosh and David Dunson proposing a method for default prior specification and efficient posterior computation.

This edited volume provides an overview of the current literature on accounting for model uncertainty in latent variable models, focusing on topics of particular interest from an applied perspective.

Arvustused

From the reviews:This book is a collection of review papers, of developments in a young and fast-moving field. It consists of two parts; on random effects models, and factor analysis and structural equation models. Within both of these, there is the familiar divide between frequentist and Bayesian methods, which receive separate reviews. The Bayesian methods are typically more recent developments, although almost all of the material covered is from the late 1980s and beyond. This book offers researchers in this area several snapshots of current lines of research. Taken individually, the chapters offer concise and clear reviews of the more mature frequentist field, as well as clearly written introductions to newer Bayesian work. (Biometrics, Summer 2009, 65, 993)

The topics are appropriate and timely. The chapters are well written and well organized. this book presents methods incorporating model uncertainty in random-effects and latent variable models. This concise, self-contained application-based volume will be beneficial to graduate students and researchers interested in both theory and application. It also is suitable as a text for a graduate seminar . I must commend the editor for providing a nice summary and discussion on the topics covered in the book I enjoyed reading it! (Technometrics, Vol. 51 (2), May, 2009)

Part I Random Effects Models
Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models
3
Ciprian M. Crainiceanu
Variance Component Testing in Generalized Linear Mixed Models for Longitudinal/Clustered Data and other Related Topics
19
Daowen Zhang and Xihong Lin
Bayesian Model Uncertainty in Mixed Effects Models
37
Satkartar K. Kinney and David B. Dunson
Bayesian Variable Selection in Generalized Linear Mixed Models
63
Bo Cai and David B. Dunson
Part II Factor Analysis and Structural Equations Models
A Unified Approach to Two-Level Structural Equation Models and Linear Mixed Effects Models
95
Peter M. Bentler and Jiajuan Liang
Bayesian Model Comparison of Structural Equation Models
121
Sik-Yum Lee and Xin-Yuan Song
Bayesian Model Selection in Factor Analytic Models
151
Joyee Ghosh and David B. Dunson
Index 165