Muutke küpsiste eelistusi

E-raamat: Random Motions in Markov and Semi-Markov Random Environments 1: Homogeneous Random Motions and their Applications

  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jan-2021
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119808183
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 170,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jan-2021
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119808183
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is the first of two volumes on random motions in Markov and semi-Markov random environments. This first volume focuses on homogenous random motions. This volume consists of two parts, the first describing the basic concepts and methods that have been developed for random evolutions. These methods are the foundational tools used in both volumes, and this description includes many results in potential operators.

Some techniques to find closed-form expressions in relevant applications are also presented. The second part deals with asymptotic results and presents a variety of applications, including random motion with different types of boundaries, the reliability of storage systems and solutions of partial differential equations with constant coefficients, using commutative algebra techniques. It also presents an alternative formulation to the Black-Scholes formula in finance, fading evolutions and telegraph processes, including jump telegraph processes and the estimation of the number of level crossings for telegraph processes.

Preface ix
Acknowledgments xiii
Introduction xv
Part 1 Basic Methods
1(56)
Chapter 1 Preliminary Concepts
3(20)
1.1 Introduction to random evolutions
3(4)
1.2 Abstract potential operators
7(4)
1.3 Markov processes: operator semigroups
11(3)
1.4 Semi-Markov processes
14(3)
1.5 Lumped Markov chains
17(2)
1.6 Switched processes in Markov and semi-Markov media
19(4)
Chapter 2 Homogeneous Random Evolutions (HRE) and their Applications
23(34)
2.1 Homogeneous random evolutions (HRE)
24(13)
2.1.1 Definition and classification of HRE
24(1)
2.1.2 Some examples of HRE
25(3)
2.1.3 Martingale characterization of HRE
28(6)
2.1.4 Analogue of Dynkin's formula for HRE
34(2)
2.1.5 Boundary value problems for HRE
36(1)
2.2 Limit theorems for HRE
37(20)
2.2.1 Weak convergence of HRE
37(2)
2.2.2 Averaging of HRE
39(3)
2.2.3 Diffusion approximation of HRE
42(3)
2.2.4 Averaging of REs in reducible phase space: merged HRE
45(3)
2.2.5 Diffusion approximation of HRE in reducible phase space
48(3)
2.2.6 Normal deviations of HRE
51(2)
2.2.7 Rates of convergence in the limit theorems for HRE
53(4)
Part 2 Applications to Reliability, Random Motions, and Telegraph Processes
57(148)
Chapter 3 Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions
59(44)
3.1 Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set N
61(13)
3.2 Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states
74(3)
3.3 Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process
77(5)
3.4 Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media
82(8)
3.5 Asymptotic expansion for distribution of random motion in Markov media under the Kac condition
90(6)
3.5.1 The equation for the probability density of the particle position performing a random walk in R™
90(1)
3.5.2 Equation for the probability density of the particle position
91(2)
3.5.3 Reduction of a singularly perturbed evolution equation to a regularly perturbed equation
93(3)
3.6 Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black--Scholes formula
96(7)
3.6.1 Asymptotic expansion for the singularly perturbed random evolution in Markov media in case of disbalance
96(4)
3.6.2 Application to an economic model of stock market
100(3)
Chapter 4 Random Switched Processes with Delay in Reflecting Boundaries
103(56)
4.1 Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries
104(5)
4.2 Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers
109(15)
4.2.1 Infinitesimal operator of random evolution with semi-Markov switching
110(3)
4.2.2 Stationary distribution of random evolution in semi-Markov media with delaying boundaries in balance case
113(8)
4.2.3 Stationary distribution of random evolution in semi-Markov media with delaying boundaries
121(3)
4.3 Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case
124(17)
4.3.1 Introduction
124(1)
4.3.2 Stationary distribution of Markov stochastic evolutions
125(4)
4.3.3 Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer
129(2)
4.3.4 Mathematical model
131(2)
4.3.5 Main mathematical results
133(5)
4.3.6 Numerical results for the symmetric case
138(3)
4.4 Application of random evolutions with delaying barriers to modeling control of supply systems with feedback: the semi-Markov switching process
141(18)
4.4.1 Estimation of stationary efficiency of one-phase system with a reservoir
141(8)
4.4.2 Estimation of stationary efficiency of a production system with two unreliable supply lines
149(10)
Chapter 5 One-dimensional Random Motions in Markov and Semi-Markov Media
159(46)
5.1 One-dimensional semi-Markov evolutions with general Erlang sojourn times
160(21)
5.1.1 Mathematical model
160(8)
5.1.2 Solution of PDEs with constant coefficients and derivability of functions ranged in commutative algebras
168(3)
5.1.3 Infinite-dimensional case
171(1)
5.1.4 The distribution of one-dimensional random evolutions in Erlang media
172(9)
5.2 Distribution of limiting position of fading evolution
181(10)
5.2.1 Distribution of random power series in cases of uniform and Erlang distributions
182(8)
5.2.2 The distribution of the limiting position
190(1)
5.3 Differential and integral equations for jump random motions
191(8)
5.3.1 The Erlang jump telegraph process on a line
192(6)
5.3.2 Examples
198(1)
5.4 Estimation of the number of level crossings by the telegraph process
199(6)
5.4.1 Estimation of the number of level crossings for the telegraph process in Kac's condition
202(3)
References 205(14)
Index 219(2)
Summary of Volume 2 221
Anatoliy Pogoruis main research interests include probability, stochastic processes, mathematical modeling of an ideal gas using multi-dimensional random motions and the interaction of telegraph particles in semi-Markov environments and the application of random evolutions in the reliability theory of storage systems.





Anatoliy Swishchuk is Professor of mathematical finance at the University of Calgary, Canada. His research areas include financial mathematics, random evolutions and their applications, stochastic calculus and biomathematics.

Ramón M. Rodríguez-Dagnino has investigated applied probability aimed at modeling systems with stochastic behavior, random motions in wireless networks, video trace modeling and prediction, information source characterization, performance analysis of networks with heavytail traffic, generalized Gaussian estimation and spectral analysis.