Muutke küpsiste eelistusi

E-raamat: Random Number Generators-Principles and Practices: A Guide for Engineers and Programmers

  • Formaat: 439 pages
  • Ilmumisaeg: 10-Sep-2018
  • Kirjastus: De|G Press
  • Keel: eng
  • ISBN-13: 9781501506062
  • Formaat - PDF+DRM
  • Hind: 87,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 439 pages
  • Ilmumisaeg: 10-Sep-2018
  • Kirjastus: De|G Press
  • Keel: eng
  • ISBN-13: 9781501506062

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Random Number Generators, Principles and Practices has been written for programmers, hardware engineers, and sophisticated hobbyists interested in understanding random numbers generators and gaining the tools necessary to work with random number generators with confidence and knowledge.

Using an approach that employs clear diagrams and running code examples rather than excessive mathematics, random number related topics such as entropy estimation, entropy extraction, entropy sources, PRNGs, randomness testing, distribution generation, and many others are exposed and demystified.

If you have ever















Wondered how to test if data is really random









Needed to measure the randomness of data in real time as it is generated









Wondered how to get randomness into your programs









Wondered whether or not a random number generator is trustworthy









Wanted to be able to choose between random number generator solutions









Needed to turn uniform random data into a different distribution









Needed to ensure the random numbers from your computer will work for your cryptographic application









Wanted to combine more than one random number generator to increase reliability or security









Wanted to get random numbers in a floating point format









Needed to verify that a random number generator meets the requirements of a published standard like SP800-90 or AIS 31









Needed to choose between an LCG, PCG or XorShift algorithm

Then this might be the book for you.
1 Introduction

1.1 Tools

1.2 Terminology

1.3 The Many Types of Random Numbers

1.3.1 Uniform Random Numbers

2 Random Number Generators

2.1 Classes of Random Number Generators

2.2 Names for RNGs

3 Making Random Numbers

3.1 A Quick Overview of the RNG Types

3.2 The Structure of Full RNG Implementations

3.3 Pool Extractor Structures

3.4 Multiple Input Extractors

4 Physically Uncloneable Functions 21

4.1 The other kind âAS Static vs. Dynamic Random Number Generators .

5 Testing Random Numbers

5.1 Known Answer Tests

5.2 Distinguishing From Random

5.3 PRNG Test Suites

5.4 Entropy Measurements

5.5 Min Entropy Estimation

5.6 Model Equivalence Testing

5.7 Statistical Prerequisite Testing

5.8 The problem Distinguishing Entropy and Pseudo-randomness

5.9 PRNG Tests: DieHarder, NIST SP800-22,TestU01, China ICS 35.040

5.10 Entropy Measurements

5.11 Min Entropy Measurements

5.12 Modeling to Test a Source

5.13 Statistical Prerequisites

5.14 Testing for bias .

5.15 results that are âAtoo goodâAZ (E.G. Chi-square == 0.5)

5.16 Distinguishing Correlation from Bias

5.17 Testing for Stationary properties

5.18 FFT analysis

5.19 Online Testing

5.20 Working From the Source RNG

5.21 Tools

5.22 Summary

6 Entropy Extraction or Distillation

6.1 A simple extractor, the XOR gate

6.2 A simple way of improving the distribution of random numbers that have
known missing

values using XOR

7 Quantifying Entropy

7.1 Rényi Entropy

7.2 Distance From Uniform



Topics to put somewhere in the book- in existing chapters and new chapters



8.1 XOR as a 2 bit extractor

8.2 Properties of real random numbers

8.3 Binomial distributions

8.4 Normal distributions

8.4.1 Dice, more dice

8.4.2 Central limit theorem

8.5 Seeing patterns

8.6 Regression to the mean

8.7 Lack of correlation, bias, algorithmic connections, predictability

8.8 Whats a True random number?

8.9 Random numbers in cryptography

8.10 Things they help with liveness, unpredictability, resistance to attacks


8.11 Examples of use

8.11.1 Salting Passwords .

8.11.2 802.11i exchange

8.11.3 PKMv2 exchange

8.11.4 Making Keys

8.12 Examples of RNG crypto failures

8.12.1 Sony PS3 attack

8.12.2 MiFare Classic

8.12.3 Online Poker

8.12.4 Debian OpenSSL Fiasco

8.12.5 Linux Boot Time Entropy

8.13 Humans and random numbers

8.14 Result of asking people for a random number

8.14.1 Normal People

8.14.2 Crypto People

8.15 Mental Random Number Tricks

8.15.1 How to think of a really random number

8.16 PRNGs

8.17 extractors

8.17.1 CBC MAC

8.17.2 BIW

8.17.3 Von Neumann

8.18 Extractor Theory

8.19 Random Number Standards

8.19.1 SP800-90A B C .

8.19.2 Ansi X9.82

8.20 PRNG Algorithms

8.20.1 SP800-90A CTR DRBG

8.20.2 SP800-90A SHA DRBG

8.20.3 XOR Construction

8.20.4 Oversampling Construction

8.21 Yarrow

8.22 Whirlpool

8.23 Linux Kernel random service

8.24 Appendices

8.25 Resources

8.25.1 SW Sources

8.25.2 Online random number sources

8.26 Example Algorithm Vectors

8.26.1 SP800-90A CTR DRBG 128 & 256

8.26.2 SP800-90A Hash DRBG SHA-1 & SHA 256

8.26.3 AES-CBC-MAC Conditioner 128

8.26.4 AES-CBC-MAC Conditioner

8.27 SP800-90 LZ Tests Issues
David Johnston, Principal Engineer, Intel Corporation