Muutke küpsiste eelistusi

E-raamat: Random Walk and the Heat Equation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 41,11 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective.

The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set.

The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Arvustused

This beautiful little book is an introduction to some of the key ideas of probability written at an advanced undergraduate level. ... This book is very well-written, self-contained up to material from elementary calculus and basic linear algebra, and has plenty of interesting exercises. It is well suited for an advanced undergraduate course, a student seminar or as material for an undergraduate project." - Mathematical Reviews

"This is a very readable introductory course resource on topics...that have more than their fair share of unreadable textbooks...Its reader-friendly style makes it an ideal choice for a reading course or self-study. ...Given the paucity of quality books in this area, the work will be a critical resource for mathematics collections... Essential." - M. Bona, Choice

Preface vii
Chapter 1 Random Walk and Discrete Heat Equation 1(48)
1.1 Simple random walk
1(13)
1.2 Boundary value problems
14(8)
1.3 Heat equation
22(7)
1.4 Expected time to escape
29(5)
1.5 Space of harmonic functions
34(6)
1.6 Exercises
40(9)
Chapter 2 Brownian Motion and the Heat Equation 49(52)
2.1 Brownian motion
49(9)
2.2 Harmonic functions
58(9)
2.3 Dirichlet problem
67(6)
2.4 Heat equation
73(3)
2.5 Bounded domain
76(9)
2.6 More on harmonic functions
85(3)
2.7 Constructing Brownian motion
88(4)
2.8 Exercises
92(9)
Chapter 3 Martingales 101(34)
3.1 Examples
101(7)
3.2 Conditional expectation
108(4)
3.3 Definition of martingale
112(1)
3.4 Optional sampling theorem
113(6)
3.5 Martingale convergence theorem
119(4)
3.6 Uniform integrability
123(4)
3.7 Exercises
127(8)
Chapter 4 Fractal Dimension 135(20)
4.1 Box dimension
135(3)
4.2 Cantor measure
138(4)
4.3 Hausdorff measure and dimension
142(10)
4.4 Exercises
152(3)
Suggestions for Further Reading 155
Gregory F. Lawler, University of Chicago, Chicago, IL, USA