Muutke küpsiste eelistusi

E-raamat: Rapid Prototyping of Biomaterials: Principles and Applications

Edited by (Professor, UNC/NCSU Joint Department of Biomedical Engineering, NC, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 172,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Rapid Prototyping of Biomaterials: Principles and Applications provides a comprehensive review of established and emerging rapid prototyping technologies (such as bioprinting) for medical applications. Rapid prototyping, also known as layer manufacturing, additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder, or liquid precursors.

Following a useful introduction, which provides an overview of the field, the book explores rapid prototyping of nanoscale biomaterials, biosensors, artificial organs, and prosthetic limbs. Further chapters consider the use of rapid prototyping technologies for the processing of viable cells, scaffolds, and tissues.

With its distinguished editor and international team of renowned contributors,Rapid Prototyping of Biomaterials is a useful technical resource for scientists and researchers in the biomaterials and tissue regeneration industry, as well as in academia.

  • Comprehensive review of established and emerging rapid prototyping technologies (such as bioprinting) for medical applications
  • Chapters explore rapid prototyping of nanoscale biomaterials, biosensors, artificial organs, and prosthetic limbs
  • Examines the use of rapid prototyping technologies for the processing of viable cells, scaffolds, and tissues


Rapid prototyping techniques, like the inkjet printer, are capable of building complex structures. These techniques have been used frequently in mechanical engineering and this technology has now been proven to successfully build biomaterials. The technology is particularly useful as layer by layer fabrication approach also allows the internal architecture to be controlled. Chapters in this book first cover the fundamentals of additive manufacturing and its various related technologies, then discuss a wide range of medical applications from tissue engineering and biosensors to printed prosthetic limbs.

Muu info

A thorough review of rapid prototyping technologies in medical applications for industry and academic researchers
Contributor contact details ix
Woodhead Publishing Series in Biomaterials xiii
Introduction xix
1 Introduction to rapid prototyping of biomaterials 1(15)
C.K. Chua
K.E Leong
J. An
1.1 Introduction
1(1)
1.2 Definition of rapid prototyping (RP) systems
2(1)
1.3 Basic process
3(2)
1.4 Conventional RP systems and classification
5(3)
1.5 RP of biomaterials
8(1)
1.6 Conclusion and future trends
9(2)
1.7 Sources of further information and advice
11(1)
1.8 References
12(4)
2 Freeform fabrication of nanobiomaterials using 3D printing 16(59)
M. Vaezi
S. Yang
2.1 Introduction
16(2)
2.2 Laser-based solid freeform fabrication (SFF) techniques
18(7)
2.3 Droplet-based SFF techniques
25(5)
2.4 Nozzle-based SFF techniques
30(5)
2.5 Extrusion freeforming of biomaterials scaffold
35(22)
2.6 Dry powder printing
57(5)
2.7 Conclusion
62(1)
2.8 References
63(12)
3 Rapid prototyping techniques for the fabrication of biosensors 75(22)
K. Pataky
J. Brugger
3.1 Introduction
75(2)
3.2 Rapid prototyping (RP) of microfluidic systems
77(5)
3.3 Functionalization
82(7)
3.4 Biomaterials compatibility
89(1)
3.5 Conclusion and future trends
90(1)
3.6 Sources of further information and advice
91(1)
3.7 References
91(6)
4 Rapid prototyping technologies for tissue regeneration 97(59)
V. Tran
X. Wen
4.1 Introduction
97(3)
4.2 Rapid prototyping (RP) technologies in tissue regeneration
100(8)
4.3 Laser-assisted techniques
108(11)
4.4 Extrusion-based techniques
119(10)
4.5 Inkjet printing (IP)
129(8)
4.6 Conclusion
137(7)
4.7 References
144(12)
5 Rapid prototyping of complex tissues with laser assisted bioprinting (LAB) 156(20)
B. Guillotin
S. Catros
V. Keriquel
A. Souquet
A. Fontaine
M. Remy
J.C. Fricain
F. Guillemot
5.1 Introduction
156(2)
5.2 Rationale for using laser assisted bioprinting (LAB) in tissue engineering
158(2)
5.3 Terms of reference for LAB
160(4)
5.4 LAB parameters for cell printing
164(1)
5.5 High resolution and high throughput needs and limits
165(4)
5.6 Applications of LAB
169(2)
5.7 Conclusion
171(1)
5.8 Acknowledgements
172(1)
5.9 References
172(4)
6 Scaffolding hydrogels for rapid prototyping based tissue engineering 176(25)
R.A. Shirwaiker
M.F. Purser
R.A. Wysk
6.1 Introduction
176(2)
6.2 Biomaterials in tissue engineering
178(4)
6.3 Review of commonly used hydrogel-forming scaffolding biomaterials
182(9)
6.4 Applications of scaffolding hydrogels
191(3)
6.5 Conclusion
194(1)
6.6 References
195(6)
7 Bioprinting for constructing microvascular systems for organs 201(20)
T. Xu
J.I. Rodriguez-Devora
D. Reyna-Soriano
B. Mohammod
L. Zhu
K. Wang
Y. Yuan
7.1 Introduction
201(1)
7.2 Biomimetic model for microvasculature printing
202(1)
7.3 The bio-blueprint for microvasculature printing
203(5)
7.4 Microvasculature printing strategies
208(7)
7.5 Microvasculature post-printing stage
215(2)
7.6 Future trends
217(1)
7.7 Acknowledgements
218(1)
7.8 References
218(3)
8 Feasibility of 3D scaffolds for organs 221(15)
T. Burg
K. Burg
8.1 Introduction
221(1)
8.2 Overview of organ fabrication
222(3)
8.3 The right place: physical properties of the scaffold
225(2)
8.4 The right time: temporal expectations on the scaffold
227(1)
8.5 The right biomaterials: scaffold fabrication effects on non-scaffold components
228(2)
8.6 The right characteristics: material types
230(2)
8.7 The right process: biofabrication
232(1)
8.8 Conclusion
233(1)
8.9 Sources of further information and advice
234(1)
8.10 References
234(2)
9 3-D organ printing technologies for tissue engineering applications 236(18)
H.W. Kang
C. Kengla
S.J. Lee
J.I Yoo
A. Atala
9.1 Introduction
236(2)
9.2 Three-dimensional printing methods for organ printing
238(4)
9.3 From medical imaging to organ printing
242(1)
9.4 Applications in tissue engineering and regenerative medicine
243(6)
9.5 Future trends
249(1)
9.6 Conclusion
250(1)
9.7 References
251(3)
10 Rapid prototyping technology for bone regeneration 254(31)
J. Kundu
F. Pati
J.H. Shima
D.W. Cho
10.1 Introduction
254(1)
10.2 Bone: properties, structure, and modeling
255(4)
10.3 Engineering of bone tissue
259(5)
10.4 Conventional scaffolds for bone regeneration
264(7)
10.5 Cell printing technology for bone regeneration
271(4)
10.6 Future trends
275(2)
10.7 Conclusion
277(1)
10.8 Acknowledgement
277(1)
10.9 References
277(8)
11 Additive manufacturing of a prosthetic limb 285(12)
S. Summit
11.1 Introduction
285(2)
11.2 The aim in designing a prosthetic limb
287(3)
11.3 A biomimetic approach to design
290(1)
11.4 Integrating functionality
291(1)
11.5 A 'greener' approach to design
292(1)
11.6 Tactile dividends of additively manufactured parts
293(1)
11.7 Vast design flexibility
294(1)
11.8 Conclusion
295(2)
Index 297
Dr. Roger Narayan is a Professor in the Joint Department of Biomedical Engineering at the University of North Carolina and North Carolina State University. He is an author of more than 100 publications as well as several book chapters on nanostructured biomedical materials. Dr. Narayan has received several honors for his research activities, including the NCSU Alcoa Foundation Engineering Research Achievement Award, the NCSU Sigma Xi Faculty Research Award, the University of North Carolina Jefferson-Pilot Fellowship in Academic Medicine, the University of North Carolina Junior Faculty Development Award, the National Science Faculty Early Career Development Award, the Office of Naval Research Young Investigator Award, and the American Ceramic Society Richard M. Fulrath Award. He has been elected as Fellow of the American Ceramic Society, the American Association for the Advancement of Science, the American Institute for Medical & Biological Engineering, and ASM International.