Muutke küpsiste eelistusi

E-raamat: Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development, Second Edition

(Professor/Director, Manufacturing Engineering Program, Mechanical Engineering Department, Missouri University of Science and Technology, Rolla, MO)
  • Formaat: 548 pages
  • Ilmumisaeg: 06-Feb-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429644184
  • Formaat - PDF+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 548 pages
  • Ilmumisaeg: 06-Feb-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429644184

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since the publication of the first edition, several Additive Manufacturing technologies have been invented, and many new terminologies have been formalized. Each chapter has been brought up-to-date so that this book continues with its coverage of engineering procedures and the application of modern prototyping technologies, such as Additive Manufacturing (AM) and Virtual Prototyping (VP) that quickly develops new products with lower costs and higher quality. The examples, practice exercises, and case studies have also been updated.

Features











Gears toward rapid product prototyping technologies Presents a wide spectrum of prototyping tools and state-of-the-art additive manufacturing technologies Explains how to use these rapid product prototyping tools in the development of products Includes examples and case studies from the industry Provides exercises in each chapter along with solutions
Preface xiii
Acknowledgments xv
Author xvii
Chapter 1 Introduction 1(18)
1.1 Development of a successful product
1(6)
1.1.1 World-class manufacturing
1(3)
1.1.2 Product definition
4(1)
1.1.3 Engineering design process
5(2)
1.1.3.1 Identifying customer's needs
5(1)
1.1.3.2 Converting needs into product design specifications
6(1)
1.1.3.3 Engineering design
6(1)
1.1.3.4 Product prototyping
7(1)
1.2 Product prototyping and its impact
7(7)
1.2.1 Prototype design and innovation
8(2)
1.2.2 Impact on cost, quality, and time
10(1)
1.2.3 Key process requirements for rapid prototyping
11(3)
1.3 Product prototyping and product development
14(4)
1.3.1 What is prototyping?
14(3)
1.3.2 Rapid prototyping in product development
17(1)
References
18(1)
Chapter 2 Product prototyping 19(66)
2.1 Product prototyping
19(7)
2.1.1 When is prototyping needed?
19(1)
2.1.2 Common mistakes and issues in product prototyping
20(2)
2.1.3 How to conduct prototyping?
22(2)
2.1.4 Physical prototype design procedure
24(2)
2.1.4.1 Task 1: Prototype conceptual design
24(1)
2.1.4.2 Task 2: Configuration design of prototype parts and components
25(1)
2.1.4.3 Task 3: Parametric design
25(1)
2.1.4.4 Task 4: Detailed design
25(1)
2.2 Prototype planning and management
26(8)
2.2.1 Project vision in project management
26(1)
2.2.2 How to manage prototype projects?
27(4)
2.2.3 Project risk management
31(3)
2.3 Product and prototype cost estimation
34(16)
2.3.1 Fundamental cost concepts
35(2)
2.3.2 Prototype cost estimation methods
37(8)
2.3.3 The cost complexities
45(5)
2.4 Prototype design methods
50(11)
2.4.1 Engineering problem-solving
50(2)
2.4.2 Prototype design principles
52(1)
2.4.3 House of quality
52(2)
2.4.4 Product design specifications
54(7)
2.5 Prototype design tools
61(10)
2.5.1 Evaluating alternatives
61(6)
2.5.1.1 First approach
62(1)
2.5.1.2 Second approach
62(1)
2.5.1.3 Third approach
63(4)
2.5.2 Useful idea generation methods
67(4)
2.5.2.1 Morphological analysis
68(1)
2.5.2.2 Functional efficiency technique
68(3)
2.6 Paper prototyping
71(7)
2.6.1 Selecting a prototype
71(1)
2.6.1.1 Prototype fidelity
71(1)
2.6.2 Paper prototyping
72(4)
2.6.3 User tests
76(2)
2.7 Learning from nature
78(5)
2.7.1 What can we learn from nature?
78(2)
2.7.2 Synectics
80(2)
2.7.2.1 Analogy
80(2)
2.7.3 Better products-back to nature
82(1)
References
83(2)
Chapter 3 Modeling and virtual prototyping 85(54)
3.1 Mathematical modeling
85(19)
3.1.1 Relationship between mathematics and physics: an example
86(4)
3.1.2 Using models for product and prototype design and evaluation
90(14)
3.1.2.1 Conservation of mass
90(1)
3.1.2.2 Conservation of momentum
91(1)
3.1.2.3 Conservation of angular momentum
92(1)
3.1.2.4 Conservation of energy
92(5)
3.1.2.5 Linear models
97(7)
3.2 Modeling of physical systems
104(12)
3.2.1 Types of modeling
104(1)
3.2.2 Examples of physical modeling
105(11)
3.3 Product modeling
116(9)
3.3.1 Product model
116(3)
3.3.2 Formal model
119(6)
3.4 Using commercial software for virtual prototyping
125(9)
3.4.1 Dynamic analysis for prototype motion evaluation
127(2)
3.4.2 FEA for prototype structure evaluation
129(5)
3.5 Virtual reality and virtual prototyping
134(4)
3.5.1 Virtual prototyping
134(2)
3.5.2 An AR system: an example
136(2)
References
138(1)
Chapter 4 Material selections and product prototyping 139(26)
4.1 Prototyping materials
139(9)
4.1.1 Prototyping and material properties
139(3)
4.1.1.1 Material selection for high-fidelity prototypes
141(1)
4.1.2 Material selection methods
142(1)
4.1.3 Material selection processes for high-fidelity prototypes
143(5)
4.2 Modeling of material properties
148(7)
4.2.1 Aesthetic modeling
149(1)
4.2.2 Warmth modeling
149(1)
4.2.3 Abrasion-resistant modeling
149(1)
4.2.4 Pitch modeling
150(1)
4.2.5 Sound absorption modeling
150(1)
4.2.6 Resilience modeling
151(1)
4.2.7 Friction modeling
152(1)
4.2.8 Thermal deformation
153(1)
4.2.9 Ductility
154(1)
4.3 Modeling and design of materials and structures
155(9)
4.3.1 Cost of unit strength
157(2)
4.3.2 Cost of unit stiffness
159(5)
References
164(1)
Chapter 5 Direct digital prototyping and manufacturing 165(50)
5.1 Solid models and prototype representation
166(12)
5.1.1 Solid modeling
167(3)
5.1.2 CAD data representation
170(8)
5.1.2.1 Error analysis
175(3)
5.2 Reverse engineering for digital representation
178(6)
5.2.1 Reverse engineering and product prototyping
178(1)
5.2.2 Reverse engineering process
179(5)
5.2.3 Ethics and reverse engineering
184(1)
5.3 Prototyping and manufacturing using CNC machining
184(24)
5.3.1 Machine codes for process control
185(3)
5.3.2 Using CAD/CAM for digital manufacturing
188(9)
5.3.3 Developing a successful postprocessor
197(11)
5.3.3.1 Opening and closing codes
199(1)
5.3.3.2 Program detail formats
200(1)
5.3.3.3 Formats of specific G- and M-codes
201(1)
5.3.3.4 Transformation matrix
201(1)
5.3.3.5 Formation of the transformation matrix for the A- and B-axis rotation
202(1)
5.3.3.6 Limitation of machine mobility around A- and B-axes
203(1)
5.3.3.7 B tilt table
204(1)
5.3.3.8 A tilt table
204(1)
5.3.3.9 Axis limits
204(4)
5.4 Fully automated digital prototyping and manufacturing
208(5)
5.4.1 Process planning and digital fabrication
208(1)
5.4.2 Feature-based design and fabrication
209(2)
5.4.3 User-assisted feature-based design
211(2)
References
213(2)
Chapter 6 Additive manufacturing processes 215(72)
6.1 Additive manufacturing overview
215(6)
6.1.1 What is AM
216(1)
6.1.1.1 AM applications
216(1)
6.1.2 What are the alternatives to AM processes?
217(3)
6.1.3 Producing functional parts
220(1)
6.2 Additive manufacturing procedure
221(19)
6.2.1 Why is AM process faster?
222(1)
6.2.2 A typical AM process
222(1)
6.2.3 Why STL files?
223(2)
6.2.4 Converting STL file from various CAD files
225(1)
6.2.5 Controlling part accuracy in STL format
226(5)
6.2.6 Slicing the STL file
231(5)
6.2.7 Building an AM part using an STL file
236(1)
6.2.8 AM file format
237(3)
6.3 Liquid-based AM processes
240(9)
6.3.1 Stereolithography process
240(4)
6.3.2 Mask-based process
244(2)
6.3.3 Inject-based process
246(3)
6.4 Solid-based AM processes
249(10)
6.4.1 Extrusion-based process
250(4)
6.4.2 Contour-cutting process
254(2)
6.4.2.1 The process
255(1)
6.4.3 UC process (Ultrasonic Consolidation™)
256(3)
6.5 Powder-based AM processes
259(25)
6.5.1 PBF processes
260(7)
6.5.1.1 PBF process steps
262(5)
6.5.2 3D inject printing process
267(3)
6.5.3 Direct laser deposition
270(7)
6.5.3.1 Advantages of DLD process
276(1)
6.5.3.2 Limitations of DLD process
277(1)
6.5.4 EBM process
277(2)
6.5.5 Hybrid material deposition and removal process
279(5)
6.6 Summary and future AM processes
284(1)
References
285(2)
Chapter 7 Building a prototype using off-the-shelf components 287(60)
7.1 How to decide what to purchase?
287(11)
7.1.1 Purchasing decision for a prototype
288(1)
7.1.2 What to purchase?
289(4)
7.1.3 Draw a flow diagram of signals and components
293(2)
7.1.4 Prioritize the precision of the system
295(3)
7.2 How to find the catalogs that gave the needed components?
298(5)
7.2.1 Evaluating companies and products
299(1)
7.2.2 Component selection
299(4)
7.3 How to ensure that the purchased components will work together?
303(10)
7.4 Tolerance analysis
313(7)
7.5 Tolerance stack analysis
320(7)
7.6 Assembly stacks
327(4)
7.7 Process capability
331(5)
7.8 Statistical tolerance analysis
336(4)
7.9 Case study: conceptual design of a chamber cover
340(5)
7.9.1 Problem description
340(1)
7.9.2 Requirement definition
341(1)
7.9.3 Component identification and design
341(2)
7.9.4 Tolerance analysis
343(2)
7.9.5 A focused prototype
345(1)
References
345(2)
Chapter 8 Prototyping of automated systems 347(62)
8.1 Actuators
347(9)
8.1.1 Types of actuators
348(2)
8.1.2 Drives
350(3)
8.1.3 When to choose an actuator
353(3)
8.1.3.1 Base/manifold-mount solenoid control valves
353(3)
8.2 Sensors
356(8)
8.2.1 Sensor classification based on sensor technology
358(4)
8.2.1.1 Manual switches
359(1)
8.2.1.2 Proximity switch
359(1)
8.2.1.3 Photosensor
359(2)
8.2.1.4 Fiber optics sensor
361(1)
8.2.1.5 Infrared sensor
362(1)
8.2.2 Sensor selection
362(2)
8.3 Controllers and analyzers
364(21)
8.3.1 PLC control
365(2)
8.3.2 Computer control
367(18)
8.4 Mechanisms
385(22)
8.4.1 Mechanisms in automation
385(6)
8.4.2 Applications and selection of mechanisms
391(19)
8.4.2.1 Linear or reciprocating input, linear output
391(3)
8.4.2.2 Rotary input, rotary output
394(1)
8.4.2.3 Rotary input, reciprocating output
395(2)
8.4.2.4 Rotary input, intermittent output
397(1)
8.4.2.5 Rotary input, irregular output
398(1)
8.4.2.6 Reciprocating input, rotary output
398(1)
8.4.2.7 Reciprocating input, oscillation output
399(2)
8.4.2.8 Reciprocating input, intermittent output
401(1)
8.4.2.9 Reciprocating input, irregular output
401(1)
8.4.2.10 Oscillation input, rotary output
401(1)
8.4.2.11 Oscillation input, reciprocating output
402(1)
8.4.2.12 Oscillation input, intermittent output
402(1)
8.4.2.13 Oscillation input, irregular output
403(1)
8.4.2.14 Rotary input, linear output
403(1)
8.4.2.15 Other complex motions
403(1)
8.4.2.16 Universal joint mechanisms
404(1)
8.4.2.17 Wedges and stopping
404(3)
References
407(2)
Chapter 9 Using prototypes for product assessment 409(54)
9.1 Introduction to DOE
410(8)
9.1.1 Design of experiments
411(1)
9.1.2 Standard deviation
411(2)
9.1.3 Loss function
413(5)
9.2 Orthogonal arrays
418(8)
9.2.1 What is OA?
419(2)
9.2.2 Taguchi's DOE procedure
421(5)
9.3 Analysis of variance
426(16)
9.3.1 One-way ANOVA
427(3)
9.3.2 Two-way ANOVA
430(3)
9.3.3 Three-way ANOVA
433(1)
9.3.4 Interaction effects
433(2)
9.3.5 Two-way ANOVA and OAs
435(4)
9.3.6 S/N ratios
439(3)
9.4 ANOVA using Excel
442(8)
9.4.1 Single-factor (one-way) ANOVA
442(2)
9.4.2 Two-factor (two-way) ANOVA without replication
444(2)
9.4.3 Two-factor (two-way) ANOVA with replication
446(2)
9.4.4 F-distribution
448(2)
9.5 Quality characteristic
450(3)
9.5.1 Overall evaluation criterion
450(1)
9.5.2 Predictive model
451(2)
9.6 An example: optimization of a prototype laser deposition process
453(8)
9.6.1 Problem statement
453(1)
9.6.2 Selection of factors and levels
453(1)
9.6.3 Orthogonal array
454(1)
9.6.4 Sample preparation
455(1)
9.6.5 Responses
455(1)
9.6.6 Formulation of the OEC
456(2)
9.6.7 Experiment
458(1)
9.6.8 Analysis of the means
458(1)
9.6.9 Analysis of the variance
459(2)
References
461(2)
Chapter 10 Prototype optimization 463(44)
10.1 Formulation of engineering problems for optimization
465(7)
10.1.1 Definitions
465(1)
10.1.2 Problem formulation
466(6)
10.2 Optimization using differential calculus
472(5)
10.3 Lagrange's multiplier method
477(6)
10.4 Optimization using Microsoft Excel
483(12)
10.5 Case study: application of optimization in fixture design
495(11)
10.5.1 Development of a fixture generation methodology
495(6)
10.5.2 Modeling deterministic positioning using linear programming
501(1)
10.5.3 Modeling accessibility of a fixture determined with linear programming
502(1)
10.5.4 Modeling clamping stability of the work part in the fixture
502(1)
10.5.5 Modeling positive clamping sequence using linear programming
502(1)
10.5.6 Modeling positive fixture reaction to all machining forces
503(3)
10.5.6.1 Numerical example
503(3)
References
506(1)
Appendix A-1 507(2)
Appendix A-2 509(2)
Appendix A-3 511(2)
Short Answers to Selected Review Problems 513(6)
Index 519
Fuewen Frank Liou is the Michael and Joyce Bytnar Professor of Mechanical Engineering Department, Missouri University of Science and Technology. He was the co-founder and has served as the Director of the Manufacturing Engineering Program at Missouri S&T since 1999. Dr. Liou has successfully received several curriculum development funds and set up two scholarship endowment programs. In 2014, Missouri S&T identified Advanced Manufacturing as the first of its four signature areas. He has received over $15M in research funding and published a book on Rapid Prototyping, along with over 250 technical papers. Dr.Lious research excels in metal additive manufacturing (AM), including hybrid additive and subtractive processes, multiscale Multiphysics process modeling, and AM process monitoring and control. His research has been funded by AFRL, NASA, NSF, and industries. He has received several teaching, research, and service awards, including several best paper awards. Dr. Liou is the cofounder of Product Innovation and Engineering (PINE), LLC. He is a senior member SME and a Fellow of ASME.