Muutke küpsiste eelistusi

E-raamat: Rational Points on Curves over Finite Fields: Theory and Applications

(National University of Singapore), (National University of Singapore)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Ever since Hasse and Weil's work in the 1930s and 1940s, algebraic curves over finite fields and their function fields have attracted both number theorists and specialists in geometry. Niederreiter and Xing, both at the National U. of Singapore, present classic field theory, recent research using the methods of algebraic geometry, and applications in algebraic coding theory and cryptography, among other topics. Includes tables of upper and lower bounds, and 188 references. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Discussion of theory and applications of algebraic curves over finite fields with many rational points.

Rational points on algebraic curves over finite fields is a key topic for algebraic geometers and coding theorists. Here, the authors relate an important application of such curves, namely, to the construction of low-discrepancy sequences, needed for numerical methods in diverse areas. They sum up the theoretical work on algebraic curves over finite fields with many rational points and discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.

Arvustused

' the book under review develops many techniques that are not covered in the existing texts. I highly recommend it.' Steven D. Galbraith, Royal Holloway, University of London 'Because of the carefully selected contents and lucid style, the book can be warmly recommended to mathematicians interested in the above-mentioned topics or in algebraic curves over finite fields with many rational points.' EMS 'The book is very clearly written. It is warmly recommended to anyone who is interested in nice mathematical theories and/or in the recent applications.' Acta. Sci. Math.

Muu info

Discussion of theory and applications of algebraic curves over finite fields with many rational points.
Preface ix
Background On Function Fields
1(35)
Riemann-Roch Theorem
1(5)
Divisor Class Groups and Ideal Class Groups
6(4)
Algebraic Extensions and the Hurwitz Formula
10(4)
Ramification Theory of Galois Extensions
14(6)
Constant Field Extensions
20(6)
Zeta Functions and Rational Places
26(10)
Class Field Theory
36(26)
Local Fields
36(2)
Newton Polygons
38(1)
Ramification Groups and Conductors
39(5)
Global Fields
44(3)
Ray Class Fields and Hilbert Class Fields
47(3)
Narrow Ray Class Fields
50(5)
Class Field Towers
55(7)
Explicit Function Fields
62(14)
Kummer and Artin-Schreier Extensions
62(3)
Cyclotomic Function Fields
65(7)
Drinfeld Modules of Rank 1
72(4)
Function Fields with Many Rational Places
76(46)
Function Fields from Hilbert Class Fields
76(6)
Function Fields from Narrow Ray Class Fields
82(26)
The First Construction
82(10)
The Second Construction
92(2)
The Third Construction
94(14)
Function Fields from Cyclotomic Fields
108(5)
Explicit Function Fields
113(5)
Tables
118(4)
Asymptotic Results
122(19)
Asymptotic Behavior of Towers
122(4)
The Lower Bound of Serre
126(7)
Further Lower Bounds for A(qm)
133(3)
Explicit Towers
136(2)
Lower Bounds on A(2), A(3), and A(5)
138(3)
Applications to Algebraic Coding Theory
141(29)
Goppa's Algebraic-Geometry Codes
141(9)
Beating the Asymptotic Gilbert-Varshamov Bound
150(6)
NXL Codes
156(4)
XNL Codes
160(4)
A Propagation Rule for Linear Codes
164(6)
Applications to Cryptography
170(21)
Background on Stream Ciphers and Linear Complexity
170(7)
Constructions of Almost Perfect Sequences
177(7)
A Construction of Perfect Hash Families
184(2)
Hash Families and Authentication Schemes
186(5)
Applications of Low-Discrepancy Sequences
191(28)
Background on (t, m, s)-Nets and (t, s)-Sequences
191(6)
The Digital Method
197(6)
A Construction Using Rational Places
203(9)
A Construction Using Arbitrary Places
212(7)
A Curves and Their Function Fields 219(8)
Transcendence Degree
219(1)
Affine Spaces
219(1)
Projective Spaces
220(2)
Affine Varieties
222(2)
Projective Varieties
224(1)
Projective Curves
225(2)
Bibliography 227(13)
Index 240