About the Authors |
|
xix | |
Preface |
|
xxi | |
Acknowledgments |
|
xxv | |
|
|
xxvii | |
|
1 Field Programmable Gate Arrays |
|
|
1 | (16) |
|
|
1 | (5) |
|
1.1.1 FPGA Hardware Architecture |
|
|
2 | (1) |
|
1.1.2 Configurable Logic Block |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.1.4 Digital Signal Processing Slice |
|
|
4 | (2) |
|
1.2 Multiprocessing System-on-Chip Architecture |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (7) |
|
1.4.1 Vivado® High-Level Synthesis Tool |
|
|
9 | (2) |
|
1.4.2 Vivado® Top-Level Design |
|
|
11 | (2) |
|
1.4.3 Number Representation and Operations |
|
|
13 | (1) |
|
1.4.4 FPGA Design Schemes |
|
|
14 | (1) |
|
1.4.4.1 Pipeline Design Architecture |
|
|
14 | (1) |
|
1.4.4.2 Parallel Design Architecture |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
2 Hardware Emulation Building Blocks for Power System Components |
|
|
17 | (62) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.3 Numerical Integration |
|
|
18 | (2) |
|
2.4 Linear Lumped Passive Elements |
|
|
20 | (7) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (2) |
|
2.4.2 Hardware Emulation of Linear Lumped Passive Elements |
|
|
26 | (1) |
|
|
27 | (3) |
|
2.5.1 Hardware Emulation of Sources |
|
|
28 | (2) |
|
|
30 | (2) |
|
2.6.1 Hardware Emulation of Switches |
|
|
30 | (2) |
|
|
32 | (22) |
|
|
32 | (3) |
|
2.7.2 Traveling Wave Model |
|
|
35 | (1) |
|
2.7.2.1 Modal Transformation |
|
|
36 | (3) |
|
2.7.3 Hardware Emulation of the TWM |
|
|
39 | (1) |
|
2.7.3.1 Transformation Unit |
|
|
39 | (1) |
|
|
39 | (2) |
|
2.7.4 Frequency Dependent Line Model |
|
|
41 | (5) |
|
2.7.5 Hardware Emulation of FDLM |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
2.7.6 Universal Line Model |
|
|
48 | (1) |
|
2.7.6.1 Frequency-Domain Formulation |
|
|
48 | (1) |
|
2.7.6.2 Time-Domain Formulation |
|
|
49 | (2) |
|
2.7.7 Hardware Emulation of the ULM |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (2) |
|
2.7.7.3 Interpolation Unit |
|
|
54 | (1) |
|
|
54 | (9) |
|
2.8.1 Hardware Emulation of Network Solver |
|
|
55 | (1) |
|
2.8.2 Paralleled EMT Solution Algorithm |
|
|
55 | (3) |
|
|
58 | (1) |
|
2.8.4 Real-Time Emulation Case Study |
|
|
59 | (4) |
|
2.9 Nonlinear Elements: Iterative Real-Time EMT Solver |
|
|
63 | (14) |
|
2.9.1 Compensation Method |
|
|
64 | (1) |
|
2.9.2 Newton-Raphson Method |
|
|
65 | (2) |
|
2.9.3 Hardware Emulation of Nonlinear Solver |
|
|
67 | (1) |
|
2.9.3.1 Nonlinear Function Evaluation |
|
|
68 | (1) |
|
2.9.3.2 Parallel Calculation of J and F(ikm) |
|
|
68 | (3) |
|
2.9.3.3 Parallel Gauss-Jordan Elimination |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
71 | (6) |
|
|
77 | (2) |
|
|
79 | (64) |
|
|
79 | (1) |
|
3.2 Nonlinear Admittance-Based Real-Time Transformer Model |
|
|
80 | (20) |
|
3.2.1 Linear Model Formulation |
|
|
80 | (2) |
|
3.2.2 Linear Module Hardware Design |
|
|
82 | (2) |
|
|
84 | (1) |
|
3.2.4 Nonlinear Model Solution |
|
|
85 | (3) |
|
3.2.4.1 Preisach Hysteresis Model |
|
|
88 | (1) |
|
3.2.4.2 Nonlinear Module Hardware Design |
|
|
89 | (1) |
|
3.2.5 Frequency-Dependent Eddy Current Model |
|
|
90 | (1) |
|
3.2.6 Hardware Emulation of Power Transformer |
|
|
91 | (3) |
|
3.2.7 Real-Time Emulation Case Studies |
|
|
94 | (1) |
|
|
94 | (5) |
|
|
99 | (1) |
|
3.3 Nonlinear Magnetic Equivalent Circuit Based Real-time Multi-Winding Transformer Model |
|
|
100 | (23) |
|
3.3.1 Topological ST EMT Model |
|
|
102 | (1) |
|
3.3.1.1 ST Operating Principle |
|
|
102 | (1) |
|
3.3.1.2 Tap-selection Algorithm |
|
|
102 | (1) |
|
3.3.1.3 High-Fidelity Nonlinear MEC-Based ST Model |
|
|
102 | (5) |
|
3.3.1.4 Iron Core Hysteresis and Eddy Currents |
|
|
107 | (2) |
|
3.3.2 High-Fidelity Nonlinear MEC-Based ST Hardware Emulation |
|
|
109 | (1) |
|
3.3.2.1 Network Transient Emulation with Embedded ST |
|
|
109 | (3) |
|
3.3.3 Real-Time Emulation Case Studies |
|
|
112 | (1) |
|
3.3.3.1 Finite Element Modeling and Validation |
|
|
112 | (1) |
|
|
112 | (11) |
|
3.4 Real-Time Finite-Element Model of Power Transformer |
|
|
123 | (18) |
|
3.4.1 Magnetodynamic Problem Formulation |
|
|
123 | (3) |
|
3.4.1.1 Refined TLM Solution |
|
|
126 | (4) |
|
3.4.1.2 Field-Circuit Coupling |
|
|
130 | (2) |
|
3.4.2 Hardware Emulation of Finite Element Model |
|
|
132 | (4) |
|
|
136 | (1) |
|
3.4.3.1 Results and Validation |
|
|
137 | (3) |
|
3.4.3.2 Speed-up and Scalability |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (50) |
|
|
143 | (1) |
|
4.2 Lumped Universal Machine (UM) Model |
|
|
144 | (13) |
|
4.2.1 UM Model Formulation |
|
|
144 | (2) |
|
4.2.2 Interfacing UM Model with Network |
|
|
146 | (2) |
|
|
148 | (1) |
|
4.2.3.1 Speed & Angle Unit |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (6) |
|
4.23 A Flux & Torque Unit |
|
|
157 | (1) |
|
4.2.3.5 Update & CompVc Unit |
|
|
151 | (1) |
|
4.2.4 Real-Time Emulation Case Study |
|
|
152 | (2) |
|
4.2.5 Overall Power System HEBB for Real-Time EMT Emulation |
|
|
154 | (4) |
|
4.3 General Framework for State-Space Electrical Machine Emulation |
|
|
158 | (12) |
|
4.3.1 FPGA Design Approaches for Electrical Machine Emulation |
|
|
159 | (1) |
|
4.3.2 State-Space Representation of Machine Models |
|
|
160 | (1) |
|
4.3.3 System Configuration on FPGA |
|
|
161 | (1) |
|
4.3.3.1 Number Representation |
|
|
161 | (1) |
|
4.3.3.2 Floating-Point Implementation by VHDL |
|
|
162 | (5) |
|
4.3.3.3 Fixed-Point Implementation by Schematic |
|
|
167 | (3) |
|
4.3 A Evaluation of Designed Architectures |
|
|
170 | (8) |
|
4.3.4.1 Real-Time Emulation Accuracy Assessment |
|
|
170 | (1) |
|
4.3.4.2 Off-line Validation |
|
|
171 | (1) |
|
4.3.4.3 Hardware Resource Utilization |
|
|
172 | (2) |
|
4.3.5 Real-Time Emulation Case Studies |
|
|
174 | (1) |
|
4.3.5.1 Case I: Induction Motor Transients |
|
|
174 | (1) |
|
4.3.5.2 Case II: Synchronous Generator Transients |
|
|
174 | (2) |
|
4.3.5.3 Case III: Line Start-Permanent Magnet Synchronous Motor Transients |
|
|
176 | (1) |
|
4.3.5.4 Case IV: DC Motor Transients |
|
|
177 | (1) |
|
4.4 Nonlinear Magnetic Equivalent Circuit Based Induction Machine Model |
|
|
178 | (12) |
|
|
179 | (2) |
|
4.4.2 Interfacing of Magnetic and Electric Circuits |
|
|
181 | (1) |
|
|
182 | (1) |
|
4.4.4 Nonlinear Solution of Detailed MEC |
|
|
182 | (1) |
|
4.4.5 Hardware Emulation of Nonlinear MEC |
|
|
183 | (2) |
|
4.4.5.1 Parallel Gauss-Jordan Elimination Unit |
|
|
185 | (2) |
|
4.4.5.2 Parallel Computational Unit for Residual Vector |
|
|
187 | (1) |
|
4.4.5.3 Nonlinear Evaluation Unit |
|
|
187 | (1) |
|
4.4.6 Evaluation of Real-Time Emulation of Induction Machine |
|
|
187 | (3) |
|
|
190 | (3) |
|
|
193 | (24) |
|
|
193 | (2) |
|
5.2 Hardware Emulation of Multifunction Protection System |
|
|
195 | (14) |
|
5.2.1 Signal Processing HEBB |
|
|
196 | (1) |
|
|
196 | (2) |
|
5.2.1.2 Symmetrical Components HEBB |
|
|
198 | (1) |
|
|
198 | (1) |
|
5.2.1.4 Zero-Crossing Detection HEBB |
|
|
199 | (4) |
|
5.2.2 Multifunction Protective System HEBB |
|
|
203 | (1) |
|
5.2.2.1 Fault Detection HEBB |
|
|
203 | (2) |
|
5.2.2.2 Directional Overcurrent Protection HEBB |
|
|
205 | (1) |
|
5.2.2.3 Over/Under Voltage Protection HEBB |
|
|
205 | (1) |
|
5.2.2.4 Distance Protection HEBB |
|
|
205 | (4) |
|
5.2.2.5 Under/Over Frequency Protection HEBB |
|
|
209 | (1) |
|
5.3 Test Setup and Real-Time Results |
|
|
209 | (5) |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
214 | (3) |
|
6 Adaptive Time-Stepping Based Real-Time EMT Emulation |
|
|
217 | (36) |
|
|
217 | (2) |
|
6.2 Nonlinear Solution and Adaptive Time-Stepping Schemes |
|
|
219 | (17) |
|
6.2.1 Nonlinear Element Solution Methods |
|
|
219 | (1) |
|
6.2.1.1 Newton-Raphson Method |
|
|
219 | (1) |
|
6.2.1.2 Piecewise Linearization (PWL) Method |
|
|
219 | (1) |
|
6.2.1.3 Piecewise N-R Method |
|
|
220 | (1) |
|
6.2.2 Adaptive Time-Stepping Schemes |
|
|
220 | (1) |
|
6.2.2.1 Local Truncation Error Method |
|
|
220 | (1) |
|
6.2.2.2 Iteration Count Method |
|
|
221 | (1) |
|
6.2.2.3 DVDT or DIDT Method |
|
|
221 | (1) |
|
6.2.3 Combinations of Adaptive Time-Stepping Schemes |
|
|
222 | (1) |
|
6.2.3.1 Measurements and Restrictions for Real-Time Emulation |
|
|
222 | (1) |
|
|
223 | (1) |
|
6.2.4.1 Diode Full-Bridge Circuit |
|
|
224 | (1) |
|
6.2.4.2 Power Transmission System |
|
|
225 | (4) |
|
6.2.4.3 FPGA Implementation |
|
|
229 | (5) |
|
6.2.4.4 Real-Time Emulation Results |
|
|
234 | (2) |
|
6.3 Adaptive Time-Stepping Universal Line Model and Universal Machine Model for Real-Time Hardware Emulation |
|
|
236 | (16) |
|
6.3.1 Subsystem-Based Adaptive Time-Stepping Scheme |
|
|
237 | (1) |
|
6.3.2 Adaptive Time-Stepping ULM and UM Models |
|
|
238 | (1) |
|
|
238 | (4) |
|
6.3.2.2 Universal Machine Model Computation |
|
|
242 | (1) |
|
6.3.3 Real-Time Emulation Case Study |
|
|
243 | (1) |
|
6.3.3.1 Hardware Implementation |
|
|
243 | (3) |
|
6.3.3.2 Latency and Hardware Resource Utilization |
|
|
246 | (1) |
|
6.3.4 Results and Validation |
|
|
247 | (1) |
|
6.3.4.1 Validation of the ULM Model |
|
|
247 | (1) |
|
6.3.4.2 Real-Time Emulation Results |
|
|
248 | (4) |
|
|
252 | (1) |
|
7 Power Electronic Switches |
|
|
253 | (48) |
|
|
253 | (2) |
|
7.2 IGBT/Diode Nonlinear Behavioral Model |
|
|
255 | (15) |
|
|
256 | (1) |
|
7.2.1.1 Mathematical Model |
|
|
256 | (1) |
|
7.2.1.2 Hardware Module Architecture |
|
|
257 | (2) |
|
|
259 | (1) |
|
7.2.2.1 Model Formulation |
|
|
259 | (4) |
|
7.2.2.2 Hardware Module Architecture |
|
|
263 | (2) |
|
7.2.2.3 Multiple Parallel Devices |
|
|
265 | (2) |
|
7.2.3 Electro-Thermal Network |
|
|
267 | (1) |
|
7.2.4 Hardware Emulation Results |
|
|
268 | (2) |
|
7.3 Physics-Based Nonlinear IGBT/Diode Model |
|
|
270 | (22) |
|
7.3.1 Physics-Based Nonlinear p-i-n Diode Model |
|
|
271 | (1) |
|
7.3.1.1 Model Formulation |
|
|
271 | (1) |
|
7.3.1.2 Model Discretization and Linearization |
|
|
272 | (2) |
|
7.3.1.3 Hardware Emulation on FPGA |
|
|
274 | (2) |
|
7.3.2 Physics-Based Nonlinear IGBT Model |
|
|
276 | (1) |
|
7.3.2.1 Model Formulation |
|
|
276 | (3) |
|
7.3.2.2 Model Discretization and Linearization |
|
|
279 | (2) |
|
7.3.2.3 Hardware Emulation on FPGA |
|
|
281 | (4) |
|
7.3.3 Hardware Emulation Results |
|
|
285 | (1) |
|
|
285 | (1) |
|
7.3.3.2 Results and comparison |
|
|
286 | (6) |
|
7.4 IGBT/Diode Curve-Fitting Model |
|
|
292 | (8) |
|
7.4.1 Linear Static Curve-fitting Model |
|
|
293 | (1) |
|
7.4.1.1 Static Characteristics |
|
|
293 | (1) |
|
7.4.1.2 Switching Transients |
|
|
293 | (3) |
|
7.4.2 Nonlinear Dynamic Curve-fitting Model |
|
|
296 | (2) |
|
7.4.3 Hardware Emulation Results |
|
|
298 | (2) |
|
|
300 | (1) |
|
|
301 | (76) |
|
|
301 | (2) |
|
|
303 | (2) |
|
8.2.1 Detailed Equivalent Circuit Model |
|
|
304 | (1) |
|
8.3 Equivalenced Device-Level Model |
|
|
305 | (19) |
|
8.3.1 Power Loss Calculation |
|
|
307 | (2) |
|
8.3.2 Thermal Network Calculation |
|
|
309 | (2) |
|
8.3.3 Hardware Emulation of SM Model on FPGA |
|
|
311 | (3) |
|
8.3.4 MMC System Hardware Emulation |
|
|
314 | (2) |
|
8.3.5 Real-Time Emulation Results |
|
|
316 | (1) |
|
8.3.5.1 Test Circuit and Hardware Resource Utilization |
|
|
316 | (2) |
|
8.3.5.2 Results and Comparison for Single-Phase Five-Level MMC |
|
|
318 | (6) |
|
8.3.5.3 Results for Three-Phase Nine-Level MMC |
|
|
324 | (1) |
|
8.4 Virtual-Line-Partitioned Device-Level Models |
|
|
324 | (20) |
|
8.4.1 TLM-Link Partitioning |
|
|
326 | (2) |
|
8.4.2 Hardware Design on FPGA |
|
|
328 | (1) |
|
8.4.2.1 Hardware Platform |
|
|
329 | (1) |
|
8.4.2.2 Controller Emulation |
|
|
329 | (1) |
|
8.4.2.3 MMC Emulation on FPGA |
|
|
330 | (5) |
|
8.4.3 Real-Time Emulation Results |
|
|
335 | (1) |
|
|
335 | (7) |
|
8.4.3.2 Induction Machine Driven by Five-Level MMC |
|
|
342 | (2) |
|
8.5 MMC Partitioned by Coupled Voltage-Current Sources |
|
|
344 | (11) |
|
|
344 | (2) |
|
8.5.2 Hardware Emulation Case of NBM-Based MMC |
|
|
346 | (1) |
|
8.5.2.1 Power Converter HIL Emulation |
|
|
346 | (1) |
|
8.5.2.2 HIL Emulation Results and Validation |
|
|
347 | (1) |
|
8.5.2.3 Islanded MMC Performance |
|
|
348 | (7) |
|
8.5.2.4 MMC-MVDC Performance |
|
|
355 | (1) |
|
8.6 Clamped Double Submodule MMC |
|
|
355 | (19) |
|
8.6.1 Operation Principles of CDSM |
|
|
357 | (2) |
|
8.6.2 Device-Level Modeling Scheme |
|
|
359 | (1) |
|
8.6.2.1 Temperature-Dependent Electrical Interface Parameter Calculation |
|
|
359 | (2) |
|
8.6.2.2 Device-Level Linearized Transient Waveform Calculation |
|
|
361 | (1) |
|
8.6.3 SM-Level Modeling Scheme |
|
|
362 | (1) |
|
8.6.4 Converter-Level Modeling Scheme |
|
|
362 | (1) |
|
8.6.5 Case Study and Hardware Implementation |
|
|
363 | (2) |
|
|
365 | (2) |
|
8.6.5.2 Latency and Resource Consumption |
|
|
367 | (1) |
|
8.6.6 Real-Time Emulation Results and Analysis |
|
|
368 | (1) |
|
8.6.6.1 Steady-State Results |
|
|
368 | (1) |
|
8.6.6.2 DC Power Flow Control |
|
|
368 | (3) |
|
8.6.6.3 DC Fault Transient Results |
|
|
371 | (3) |
|
|
374 | (3) |
|
|
377 | (20) |
|
|
377 | (2) |
|
|
379 | (2) |
|
9.2.1 System-Level Modeling |
|
|
379 | (1) |
|
9.2.2 Hardware Implementation |
|
|
380 | (1) |
|
9.3 Solid-State Transformer Modeling |
|
|
381 | (13) |
|
|
382 | (1) |
|
9.3.1.1 TLM-Stub Model (TLM-S) |
|
|
382 | (1) |
|
9.3.1.2 Nonlinear Switch-Based Model (NSM) |
|
|
383 | (1) |
|
|
384 | (1) |
|
9.3.2 Three-Phase Saturable Transformer Model |
|
|
385 | (1) |
|
|
385 | (1) |
|
|
386 | (4) |
|
9.3.5 SST Real-Time HIL Emulation Results |
|
|
390 | (1) |
|
9.3.5.1 Device-Level Behavior |
|
|
390 | (1) |
|
9.3.5.2 Converter Performance |
|
|
391 | (1) |
|
|
392 | (2) |
|
|
394 | (3) |
|
|
397 | (50) |
|
|
397 | (2) |
|
|
399 | (3) |
|
10.2.1 MTDC Test System Schematic |
|
|
399 | (2) |
|
10.2.2 DC Line Protection |
|
|
401 | (1) |
|
10.2.2.1 Voltage Derivative Protection |
|
|
401 | (1) |
|
10.2.2.2 Over Current Protection |
|
|
401 | (1) |
|
10.3 Proactive Hybrid HVDC Breaker |
|
|
402 | (24) |
|
|
403 | (1) |
|
|
404 | (2) |
|
10.3.3 General HHB Unit Model |
|
|
406 | (1) |
|
10.3.4 Two-Node IGBT Models |
|
|
407 | (2) |
|
10.3.5 IGBT Low-Order Nonlinear Behavioral Model |
|
|
409 | (1) |
|
10.3.5.1 IGBT Fourth-Order Behavioral Model |
|
|
409 | (1) |
|
10.3.5.2 Parameters Extraction |
|
|
409 | (1) |
|
10.3.5.3 Sensitivity Analysis |
|
|
410 | (1) |
|
10.3.5.4 Model Parallelization |
|
|
411 | (1) |
|
10.3.6 Electro-Thermal Network |
|
|
412 | (1) |
|
10.3.7 HHB Hardware Implementation on FPGA |
|
|
412 | (4) |
|
10.3.8 HHB HIL Emulation Results |
|
|
416 | (1) |
|
10.3.8.1 Device-Level Performance |
|
|
416 | (8) |
|
10.3.8.2 System-Level Performance |
|
|
424 | (2) |
|
10.4 Ultrafast Mechatronic Circuit Breaker |
|
|
426 | (18) |
|
10.4.1 Nonlinear Device-Level Thyristor Model |
|
|
426 | (1) |
|
10.4.1.1 Basic Device Characteristics |
|
|
426 | (2) |
|
10.4.1.2 Scalable Cascaded Thyristor Model |
|
|
428 | (3) |
|
|
431 | (2) |
|
10.4.3 Relaxed Scalar Newton-Raphson (RSNR) |
|
|
433 | (2) |
|
10.4.4 UFMCB Hardware Design |
|
|
435 | (3) |
|
10.4.5 UFMCB Real-Time Tests and Validation |
|
|
438 | (1) |
|
10.4.5.1 Four-Terminal DC Grid Test Case |
|
|
438 | (1) |
|
10.4.5.2 UFMCB Design Evaluation by HIL System |
|
|
438 | (4) |
|
10.4.5.3 UFMCB in HVDC Grid |
|
|
442 | (2) |
|
|
444 | (3) |
|
11 Large-Scale AC and DC Networks |
|
|
447 | (84) |
|
|
447 | (2) |
|
11.2 Spatial Decomposition and Parallelism |
|
|
449 | (4) |
|
11.2.1 Functional Decomposition for Large-Scale Real-Time Emulation |
|
|
449 | (2) |
|
11.2.2 Hardware Module Parallelism |
|
|
451 | (2) |
|
11.3 Multi-FPGA Hardware Design for Real-Time EMT Emulation |
|
|
453 | (12) |
|
11.3.1 Case I: 3-FPGA Hardware Design |
|
|
454 | (3) |
|
11.3.2 Case II: 10-FPGA Hardware Design |
|
|
457 | (3) |
|
11.3.3 Performance and Scalability of the Real-Time EMT Emulator |
|
|
460 | (5) |
|
11.4 CIGRE DC Grid Hybrid Modeling Methodology |
|
|
465 | (14) |
|
|
467 | (1) |
|
|
467 | (1) |
|
11.4.3 Hybrid Modeling Methodology |
|
|
468 | (1) |
|
11.4.3.1 Device-Level Electrothermal Model |
|
|
469 | (1) |
|
11.4.3.2 Equivalent Circuit Model |
|
|
469 | (2) |
|
11.4.3.3 Average Value Model |
|
|
471 | (1) |
|
11.4.3.4 Transmission Line Model |
|
|
471 | (1) |
|
11.4.4 Real-Time MPSoC-FPGA Based DC Grid Emulator |
|
|
471 | (1) |
|
11.4.4.1 System Decomposition |
|
|
471 | (1) |
|
11.4.4.2 Hardware Resource Allocation and Task Partitioning |
|
|
472 | (2) |
|
11.4.4.3 Design and Implementation |
|
|
474 | (1) |
|
11.4.5 Real-Time Emulation Results and Validation |
|
|
475 | (1) |
|
11.4.5.1 Steady-State Operation |
|
|
475 | (2) |
|
11.4.5.2 Power Flow Command Change |
|
|
477 | (1) |
|
|
477 | (2) |
|
11.5 Real-Time Co-Emulation Framework for Cyber-Physical Systems |
|
|
479 | (16) |
|
11.5.1 Communication Network Simulation and Co-Simulation |
|
|
481 | (3) |
|
11.5.2 Real-Time Co-Emulation Framework |
|
|
484 | (1) |
|
11.5.2.1 RTCE Hardware Architecture |
|
|
484 | (3) |
|
11.5.3 Hardware Implementation of RTCE |
|
|
487 | (1) |
|
11.5.3.1 Multi-Board EMT Emulation |
|
|
488 | (1) |
|
11.5.3.2 Communication Protocol and Implementation |
|
|
489 | (2) |
|
11.5.4 Real-Time Emulation Results and Verification |
|
|
491 | (1) |
|
11.5.4.1 Processing Delay and Hardware Resource Cost |
|
|
491 | (1) |
|
11.5.4.2 Case Study 1: Over-Current Fault |
|
|
492 | (1) |
|
11.5.4.3 Case Study 2: Communication Link Failure |
|
|
493 | (2) |
|
11.6 Faster-Than-Real-Time Hybrid Dynamic-EMT Emulation of AC-DC Grids |
|
|
495 | (15) |
|
11.6.1 Flexible Time-Stepping Algorithm for Dynamic Emulation |
|
|
496 | (1) |
|
11.6.1.1 Transient Stability Emulation Methodology |
|
|
496 | (1) |
|
11.6.1.2 Local Equipment Based Flexible Time-stepping |
|
|
497 | (1) |
|
11.6.2 AC-DC Grid Component Modeling |
|
|
498 | (1) |
|
11.6.2.1 AC-DC Grid Interface |
|
|
498 | (1) |
|
11.6.2.2 AC Grid Modeling |
|
|
499 | (2) |
|
11.6.2.3 DC Grid Modeling |
|
|
501 | (2) |
|
11.6.3 FTRT Emulation on FPGAs |
|
|
503 | (2) |
|
11.6.4 FTRT Emulation Results and Validation |
|
|
505 | (1) |
|
11.6.4.1 Three-Phase-to-Ground Fault |
|
|
506 | (1) |
|
11.6.4.2 Generator Outage and Sudden Load Change |
|
|
507 | (3) |
|
|
510 | (21) |
|
|
513 | (18) |
|
Appendix A Parameters for Case Studies |
|
|
531 | (14) |
|
|
531 | (1) |
|
A.1.1 Case in Section 2.7 |
|
|
531 | (1) |
|
A.1.2 Cases in Section 2.8 |
|
|
531 | (1) |
|
|
531 | (2) |
|
A.2.1 Cases in Section 3.2 |
|
|
531 | (1) |
|
|
531 | (1) |
|
|
532 | (1) |
|
A.2.2 Cases in Section 3.3 |
|
|
532 | (1) |
|
|
532 | (1) |
|
|
532 | (1) |
|
A.2.3 Cases in Section 3.4 |
|
|
532 | (1) |
|
|
533 | (5) |
|
A.3.1 UM Case in Section 4.2 |
|
|
533 | (1) |
|
A.3.2 Cases in Section 4.3 |
|
|
534 | (1) |
|
A.3.2.1 State-Space Matrices of Rotating Machines |
|
|
534 | (4) |
|
A.3.2.2 Parameters of Rotating Machines |
|
|
538 | (1) |
|
A.3.3 MEC Case in Section 4.4 |
|
|
538 | (1) |
|
|
538 | (1) |
|
|
539 | (1) |
|
A.5.1 Cases in Section 6.2 |
|
|
539 | (1) |
|
A.5.2 Cases in Section 6.3 |
|
|
540 | (1) |
|
|
540 | (1) |
|
|
541 | (1) |
|
A.7.1 Equivalenced Device-Level Model in Section 8.3 |
|
|
541 | (1) |
|
A.7.2 MMC-IM Case in Section 8.4 |
|
|
541 | (1) |
|
A.7.3 MVDC Case in Section 8.5 |
|
|
541 | (1) |
|
A.7.4 MTDC Case in Section 8.6 |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
542 | (1) |
|
|
542 | (1) |
|
|
542 | (1) |
|
|
543 | (2) |
|
A.10.1 CIGRE B4 DC Grid Test System |
|
|
543 | (2) |
Index |
|
545 | |