Muutke küpsiste eelistusi

E-raamat: Real-Time Search for Learning Autonomous Agents

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Autonomous agents or multiagent systems are computational systems in which several computational agents interact or work together to perform some set of tasks. These systems may involve computational agents having common goals or distinct goals.
Real-Time Search for Learning Autonomous Agents focuses on extending real-time search algorithms for autonomous agents and for a multiagent world. Although real-time search provides an attractive framework for resource-bounded problem solving, the behavior of the problem solver is not rational enough for autonomous agents. The problem solver always keeps the record of its moves and the problem solver cannot utilize and improve previous experiments. Other problems are that although the algorithms interleave planning and execution, they cannot be directly applied to a multiagent world. The problem solver cannot adapt to the dynamically changing goals and the problem solver cannot cooperatively solve problems with other problem solvers. This book deals with all these issues.
Real-Time Search for Learning Autonomous Agents serves as an excellent resource for researchers and engineers interested in both practical references and some theoretical basis for agent/multiagent systems. The book can also be used as a text for advanced courses on the subject.

Muu info

Springer Book Archives
Realtime Search Performance.- Controlling Learning Processes.- Adapting
to Changing Goals.- Cooperating in Uncertain Situations.- Forming Problem
Solving Organizations.