Muutke küpsiste eelistusi

E-raamat: Realizability: An Introduction to its Categorical Side

(Utrecht University, The Netherlands)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 135,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Aimed at starting researchers in the field, Realizability gives a rigorous, yet reasonable introduction to the basic concepts of a field which has passed several successive phases of abstraction. Material from previously unpublished sources such as Ph.D. theses, unpublished papers, etc. has been molded into one comprehensive presentation of the subject area.

- The first book to date on this subject area
- Provides an clear introduction to Realizability with a comprehensive bibliography
- Easy to read and mathematically rigorous
- Written by an expert in the field

Arvustused

"This book aims at beginning researchers in the field of realizability and so emphasizes technical tools rather than any overview of methods or results. The central object here which created the categorical approach to realizability is Martin Hylands effective topos called Eff. The author advises that readers interested in getting directly to that topos can skip Chapter 1 and will only need "some parts of Chapter 2" (p. xii). However, that opening material will be needed for any research career on this and other realizability toposes. The reader is assumed to know some amount of general category theory as well as to have an "acquaintance with the notion of a topos" (p. vi). The tools are presented very clearly and this is especially advantageous for the idea of a tripos. The standard reference on triposes has been Andrew Pittss 1982 Ph.D. dissertation [ The theory of triposes. Cambridge: Univ. Cambridge (1982)]. Considerable simplification has been possible since that pioneering work. This book gives a very clear exposition and should become the reference." --Zentralblatt MATH 1225-1

Preface v
Introduction ix
Partial Combinatory Algebras
1(48)
Basic definitions
1(4)
Pairing, Booleans and Definition by Cases
5(1)
P(A)-valued predicates
5(6)
Further properties; recursion theory
11(4)
Recursion theory in pcas
11(4)
Examples of pcas
15(9)
Kleene's first model
15(1)
Relativized recursion
15(1)
Kleene's second model
15(2)
K2 generalized
17(1)
Sequential computations
18(2)
The graph model P(ω)
20(1)
Graph models
21(1)
Domain models
22(1)
Relativized models
22(1)
Term models
23(1)
Pitts' construction
23(1)
Models of Arithmetic
23(1)
Morphisms and Assemblies
24(6)
Applicative morphisms and S-functors
30(5)
Decidable applicative morphisms
35(5)
Order-pcas
40(9)
Realizability triposes and toposes
49(66)
Triposes
49(15)
Preorder-enriched categories
49(2)
Triposes: definition and basic properties
51(4)
Interpretation of languages in triposes
55(4)
A few useful facts
59(5)
The tripos-to-topos construction
64(5)
Internal logic of C[ P] reduced to the logic of P
69(4)
The `constant objects' functor
73(9)
Geometric morphisms
82(16)
Geometric morphisms of toposes
82(4)
Geometric morphisms of triposes
86(6)
Geometric morphisms between realizability triposes on Set
92(3)
Inclusions of triposes and toposes
95(3)
Examples of triposes and inclusions of triposes
98(11)
Sublocales
98(1)
Order-pcas
98(1)
Set as a subtopos of RT(A)
99(1)
Relative recursion
100(1)
Order-pcas with the pasting property
101(1)
Extensional realizability
102(1)
Modified realizability
102(1)
Lifschitz realizability
103(3)
Relative realizability
106(1)
Definable subtriposes
107(2)
Iteration
109(2)
Glueing of triposes
111(4)
The Effective Topos
115(140)
Recapitulation and arithmetic in 僃
115(17)
Second-order arithmetic in 僃
125(6)
Third-order arithmetic in 僃
131(1)
Some special objects and arrows in 僃
132(22)
Closed and dense subobjects
132(1)
Infinite coproducts and products
133(1)
Projective and internally projective objects, and choice principles
134(4)
僃 as a universal construction
138(2)
Real numbers in 僃
140(3)
Discrete and modest objects
143(5)
Decidable and semidecidable subobjects
148(6)
Some analysis in 僃
154(8)
General facts about R
155(2)
Specker sequences and singular coverings
157(2)
Real-valued functions
159(3)
Discrete families and Uniform maps
162(31)
Weakly complete internal categories in 僃
178(15)
Set Theory in 僃
193(21)
The McCarty model for IZF
193(18)
The Lubarsky-Streicher-Van den Berg model for CZF
211(1)
Well-founded trees and W-Types in 僃
212(2)
Synthetic Domain Theory in 僃
214(16)
Complete partial orders
215(3)
The synthetic approach
218(1)
Elements of Synthetic Domain Theory
219(9)
Models for SDT in 僃
228(2)
Synthetic Computability Theory in 僃
230(4)
General Comments about the Effective Topos
234(21)
Analogy between and the Yoneda embedding
235(4)
Small dense subcategories in 僃
239(6)
Idempotence of realizability
245(10)
Variations
255(36)
Extensional Realizability
255(8)
Ext as exact completion?
262(1)
Modified Realizability
263(5)
Function Realizability
268(6)
Lifschitz Realizability
274(3)
Relative Realizability
277(6)
Realizability toposes over other toposes
283(8)
The free topos with NNO
283(4)
A sheaf model of realizability
287(4)
Bibliography 291(14)
Index 305