Muutke küpsiste eelistusi

E-raamat: Reduction Theory and Arithmetic Groups

(Universität Wien, Austria)
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 15-Dec-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108935074
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 15-Dec-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108935074
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.

Filling a gap in the literature, this text gives a solid, rigorous foundation in the subject of the arithmetic of algebraic groups and reduction theory. It follows different developments in this area, geometric as well as number theoretical, at a level suitable for graduate students and researchers in related fields.

Muu info

Build a solid foundation in the area of arithmetic groups and explore its inherent geometric and number-theoretical components.
Preface ix
PART I ARITHMETIC GROUPS IN THE GENERAL LINEAR GROUP
1(138)
1 Modules, Lattices, and Orders
3(43)
1.1 Modules
4(3)
1.2 Projective R-modules
7(3)
1.3 Modules of fractions and localisation
10(4)
1.4 Lattices
14(4)
1.5 Integrality properties
18(2)
1.6 Discrete valuation rings, Dedekind domains, and overlings
20(6)
1.7 Modules over Dedekind domains
26(2)
1.8 Central simple algebras
28(9)
1.9 Orders in algebras
37(6)
1.10 Non-abelian Galois cohomology
43(3)
2 The General Linear Group over Rings
46(24)
2.1 Elementary matrices
47(6)
2.2 The stable structure of GLn
53(6)
2.3 The stable range of a Dedekind domain
59(2)
2.4 The stable range of orders in division algebras
61(2)
2.5 An application: Mennicke symbols and their properties
63(7)
3 A Menagerie of Examples: A Historical Perspective
70(20)
3.1 Reduction theory of quadratic forms
71(7)
3.2 Lattices in Euclidean space
78(4)
3.3 Unit groups of number fields
82(1)
3.4 Unit groups in division algebras: the theorem of Kate Hey
83(2)
3.5 The modular group
85(5)
4 Arithmetic Groups
90(32)
4.1 Rings of S-integers: general concept and results
91(2)
4.2 Global fields
93(4)
4.3 Rings of S-integers in global fields
97(5)
4.4 Arithmetic and S-arithmetic groups
102(2)
4.5 Arithmetic groups: their ambient Lie groups
104(1)
4.6 S-arithmetic groups: their ambient Lie groups
105(3)
4.7 The general linear group over the ring of adeles
108(5)
4.8 Strong approximation property and consequences
113(5)
4.9 Elements of finite order in GLn (Z)
118(4)
5 Arithmetically Defined Kleinian Groups and Hyperbolic 3-Space
122(17)
5.1 Kleinian groups acting on hyperbolic 3-space
122(2)
5.2 Bianchi groups
124(2)
5.3 Reduction theory for Bianchi groups
126(9)
5.4 Arithmetic groups originating from orders in quaternion division algebras
135(4)
PART II ARITHMETIC GROUPS OVER GLOBAL FIELDS
139(158)
6 Lattices: Reduction Theory for GLn
141(11)
6.1 The basic cases of a global field: the number field Q and a rational function field Fq(t)
142(1)
6.2 Minkowski inequalities or successive minima
143(7)
6.3 Mahler's compactness criterion
150(2)
7 Reduction Theory and (Semi)-Stable Lattices
152(22)
7.1 Euclidean Z-lattices
153(6)
7.2 Arithmetic Ok - lattices
159(5)
7.3 Canonical filtration, (semi)-stable lattices
164(3)
7.4 Reduction theory and the canonical filtration for Z-lattices
167(4)
7.5 Comparison
171(3)
8 Arithmetic Groups in Algebraic - Groups
174(28)
8.1 Arithmetic groups
175(3)
8.2 Chevalley group schemes over Z
178(8)
8.3 Integral structures for inner k-forms of SLn
186(5)
8.4 Integral structures for arbitrary k-forms of SLn
191(8)
8.5 Division algebras with prescribed local behaviour
199(3)
9 Arithmetic Groups, Ambient Lie Groups, and Related Geometric Objects
202(35)
9.1 Homogeneous spaces, locally symmetric spaces
203(2)
9.2 S-arithmetic groups and affine buildings
205(1)
9.3 Arithmetic groups in unipotent groups
206(5)
9.4 Arithmetic groups in algebraic k-tori
211(8)
9.5 Godement's compactness criterion
219(13)
9.6 Constructions of compact or non-compact arithmetic quotients
232(5)
10 Geometric Cycles
237(12)
10.1 Construction of geometric cycles
238(3)
10.2 Orientability
241(4)
10.3 Intersection numbers, excess bundles, and Euler numbers
245(4)
11 Geometric Cycles via Rational Automorphisms
249(25)
11.1 Prelude
250(2)
11.2 Fixed points and non-abelian Galois cohomology
252(4)
11.3 Intersection numbers of special geometric cycles
256(2)
11.4 The Euler number of the excess bundle
258(10)
11.5 Non-vanishing of the intersection number of two geometric cycles
268(4)
11.6 Construction of cohomology classes: an outlook
272(2)
12 Reduction Theory for Adelic Coset Spaces
274(23)
12.1 Preliminaries: adelic coset spaces
275(1)
12.2 The adele groups G(Ak) and G(Ak)1
276(3)
12.3 Adelic heights and their properties
279(6)
12.4 Reduction theory for GLn: Minkowski revisited
285(4)
12.5 Compactness criterion and Siegel domains
289(2)
12.6 The case of connected reductive k-split groups: a sketch
291(6)
PART III APPENDICES
297(2)
Appendix A Linear Algebraic Groups: A Review
299(27)
A.1 Affine k-group schemes with k a ring
299(5)
A.2 Hopf algebras and affine k-group schemes
304(3)
A.3 Smoothness
307(1)
A.4 Operations and representations
308(3)
A.5 Restriction and induction of G-modules
311(2)
A.6 Cohomology of G-modules
313(1)
A.7 Weil restriction or restriction of scalars
314(3)
A.8 Unipotent groups
317(2)
A.9 Diagonalisable and multiplicative groups
319(2)
A.10 Algebraic k-tori
321(1)
A.11 Reductive groups
322(2)
A.12 Forms of algebraic groups
324(2)
Appendix B Global Fields
326(9)
B.1 Absolute values and local fields
326(2)
B.2 Global fields
328(2)
B.3 Restricted products of topological spaces
330(1)
B.4 The ring of adeles
331(2)
B.5 The idele group
333(1)
B.6 S-integers and S-units
334(1)
Appendix C Topological Groups, Homogeneous Spaces, and Proper Actions
335(15)
C.1 Topological groups
335(4)
C.2 Topological transformation groups
339(2)
C.3 Locally compact transformation groups
341(1)
C.4 Proper maps
341(2)
C.5 Proper actions of topological groups
343(3)
C.6 Characterisation of proper actions
346(4)
References 350(7)
Index 357
Joachim Schwermer is Emeritus Professor of Mathematics at the University of Vienna, and recently Guest Researcher at the Max-Planck-Institute for Mathematics, Bonn. He was Director of the Erwin-Schrödinger-Institute for Mathematics and Physics, Vienna from 2011 to 2016. His research focuses on questions arising in the arithmetic of algebraic groups and the theory of automorphic forms.