Muutke küpsiste eelistusi

E-raamat: Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

  • Formaat: 114 pages
  • Ilmumisaeg: 24-Feb-2017
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309454452
  • Formaat - PDF+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 114 pages
  • Ilmumisaeg: 24-Feb-2017
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309454452

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible. In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop.

Table of Contents



Front Matter 1 Introduction 2 Framing the Workshop 3 Inference About Discoveries Based on Integration of Diverse Data Sets 4 Inference About Causal Discoveries Driven by Large Observational Data 5 Inference When Regularization Is Used to Simplify Fitting of High-Dimensional Models 6 Panel Discussion References Appendixes Appendix A: Registered Workshop Participants Appendix B: Workshop Agenda Appendix C: Acronyms
1 Front Matter; 2 1 Introduction; 3 2 Framing the Workshop; 4 3
Inference About Discoveries Based on Integration of Diverse Data Sets; 5 4
Inference About Causal Discoveries Driven by Large Observational Data; 6 5
Inference When Regularization Is Used to Simplify Fitting of High-Dimensional
Models; 7 6 Panel Discussion; 8 References; 9 Appendixes; 10 Appendix A:
Registered Workshop Participants; 11 Appendix B: Workshop Agenda; 12 Appendix
C: Acronyms