Muutke küpsiste eelistusi

E-raamat: Reflection Seismology: Theory, Data Processing and Interpretation

(Institute of Geology of CAGS and China University of Geological Science, Beijing, China)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Sep-2013
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780124096004
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 96,33 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Sep-2013
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780124096004
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This reflection seismology text is offered by Yang to graduate students in applied geophysics. The text focuses on a limited set of concepts with detail reserved for mathematical elaborations. The first three chapters introduce wave theory with complex coefficients, discuss ideal elastic waves, and generalize to seismic waves through the Gassmann model and Biot's theory. Chapters four through six are heavy with mathematics, discussing wave reduction with data processing, integral solutions to the wave equation with boundary and initial value conditions--using a variety of mathematical tools including Green's functions, Kirchoff integral formula, and the eikonal equation--and decomposition and continuation of seismic wave field using Fourier integrals. The last chapter treats seismic inversion and how to solve problems using inverse operators, while the appendices offer supplementary mathematical and computational guidance. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Authored by a geophysicist with more than 50 years of experience in research and instruction, Reflection Seismology: Theory, Data Processing and Interpretation provides a single source of foundational knowledge in reflection seismology principles and theory. Reflection seismology has a broad range of applications and is used primarily by the oil and gas industry to provide high-resolution maps and build a coherent geological story from maps of processed seismic reflections. Combined with seismic attribute analysis and other exploration geophysics tools, it aids geologists and geo-engineers in creating geological models of areas of exploration and extraction interest. Yet as important as reflection seismology is to the hydrocarbon industry, it’s difficult to find a single source that synthesizes the topic without having to wade through numerous journal articles from a range of different publishers. This book is a one-stop source of reflection seismology theory, helping scientists navigates through the wealth of new data processing techniques that have emerged in recent years.

  • Provides geoscientists and geo-engineers with a theoretical framework for navigating the rapid emergence of new data processing techniques
  • Presents a single source of reflection seismology content instead of a scattering of disparate journal articles
  • Features more than 100 figures, illustrations, and working examples to aid the reader in retaining key concepts
  • Arms geophysicists and geo-engineers with a solid foundation in seismic wave equation analysis and interpretation

Muu info

Provides geoscientists and geo-engineers with a solid foundation in reflection seismology theory, allowing them to navigate the rapid emergence of new data processing techniques
Preface ix
1 Introduction to the Wave Theory
1(18)
1.1 Wave Motion in Continuous Media
2(3)
1.2 Vibration
5(1)
1.3 Propagation and Diffusion
6(2)
1.4 Acoustic Wave Equation
8(3)
1.5 Acoustic Wave Equation with Complex Coefficients
11(5)
1.5.1 Complex Elastic Modulus and the Complex Wave Velocity
11(2)
1.5.2 Damping Wave Equations in Viscoelastic Media
13(1)
1.5.3 Viscoelastic Models
14(2)
1.6 Acoustic Wave Equation with Variant Density or Velocity
16(2)
1.7 Summary
18(1)
2 Elastic Waves in a Perfect Elastic Solid
19(28)
2.1 Stress Tensor and Strain Tensor
20(3)
2.2 Vector Wave Equation in Fully Elastic Media
23(4)
2.3 Scalar Wave Equations in Fully Elastic Media
27(3)
2.4 Elastic Wave Equation in Two-Dimensional Media
30(1)
2.5 Elastic Wave Equations in Anisotropic Media
31(3)
2.6 Boundary Conditions for Elastic Wave Equations
34(3)
2.7 Elastic Wave Velocities of Rocks
37(10)
3 From Elastic Waves to Seismic Waves
47(36)
3.1 On Acoustic Wave Equations with Variant Coefficients
48(6)
3.2 Seismic Reflection Records and Corresponding Equations
54(4)
3.2.1 Wave Equations for Marine Reflection Records
54(1)
3.2.2 Wave Equations for Land Single-Component Records
55(1)
3.2.3 Wave Equations for Land Three-Component Records
55(3)
3.3 Elastic Waves in Horizontally Multilayered Media
58(8)
3.3.1 Elastic Wave Equations in a Cylindrical Coordinate System
58(5)
3.3.2 Boundary Conditions
63(1)
3.3.3 Acoustic Wave Propagation in Layered Half Space
64(2)
3.4 Elastic Waves in Fluid-Saturated Solid (I): Gassmann's Model
66(5)
3.4.1 The Gassmann Model
66(3)
3.4.2 The Generalized Gassmann Model
69(2)
3.5 Elastic Waves in Fluid-Saturated Solid (II): Biot's Theory
71(6)
3.5.1 Low-Frequency Elastic Waves in a Fluid-Saturated Porous Solid
72(4)
3.5.2 All Frequency Elastic Waves in a Fluid-Saturated Porous Solid
76(1)
3.6 Tracking Reservoirs with the Gassmann Model
77(6)
4 Wave Equation Reduction with Reflection Seismic Data Processing
83(24)
4.1 The Statics of Land Seismic Data
84(3)
4.2 Muting and Deghost Filtering
87(1)
4.3 Shear Wave Decoupling Process
88(1)
4.4 Suppression of Multiples Generated by the Ocean Bottom
89(2)
4.5 CMP Stacking
91(4)
4.6 The One-Way Wave Equation and the Wave Migration Equations
95(4)
4.7 Reflectors
99(6)
4.8 Summary
105(2)
5 Integral Solutions of the Wave Equation with Boundary and Initial Value Conditions
107(28)
5.1 Integral Solutions for Mixed Cauchy Boundary Value Problems
109(3)
5.2 The Kirchhoff Integral Formula for the Boundary Value Wave Equation Problems
112(5)
5.3 The Green's Function of Boundary Value Problems for Wave Motion
117(7)
5.3.1 The Green's Function Method
117(2)
5.3.2 Green's Function for the Wave Equation with Zero Initial Value Problems
119(3)
5.3.3 Green's Function of the Wave Equation in Half Space with a Point Source
122(2)
5.4 The Green's Function in Medium with Linear Velocity
124(3)
5.5 The Eikonal Equation and the Transport Equations
127(4)
5.6 The Second-Type Green's Function with Nonhomogeneous Boundary Conditions
131(2)
5.7 Summary
133(2)
6 Decomposition and Continuation of Seismic Wave Field
135(36)
6.1 The Equations of Acoustic Upgoing and Downgoing Waves
137(3)
6.2 Kirchhoff Migration of the Prestack Seismic Data
140(3)
6.3 Downward Continuation of the Reflective Seismic Wave Field in Homogenous Media
143(5)
6.4 Downward Continuation of Seismic Wave Field in Vertically Inhomogeneous Media
148(3)
6.5 The Pseudo-Differential Operator and Fourier Integral Operator
151(10)
6.5.1 Analysis of the Boundary Value Problem of Wave Equation with Variant Coefficients
151(2)
6.5.2 The Oscillatory Integral
153(3)
6.5.3 The Fourier Integral Operator
156(3)
6.5.4 Decomposition of Fourier Integral Operator
159(2)
6.6 Downward Continuation of the Seismic Wave Field in Inhomogeneous Medium
161(4)
6.7 Decomposition of Body Waves in Reflection Seismic Wave Field
165(4)
6.8 Brief Summary
169(2)
7 Seismic Inversion
171(44)
7.1 Introduction to Inverse Problems in Seismology
172(8)
7.1.1 Inverse Problems in Seismic Exploration
172(2)
7.1.2 The Generalized Solutions
174(3)
7.1.3 Linearized Iterative Seismic Inversion
177(1)
7.1.4 Nonlinear Stochastic Inversions
178(2)
7.2 Born Approximation Inversion by Inverse Scattering
180(7)
7.3 Acoustic Wave Equation Inversion in Vertically Inhomogeneous Background Media
187(3)
7.4 Acoustic Inverse Scattering Problems in Variant Velocity Media
190(8)
7.4.1 Acoustic Generalized Radon Transformation
190(2)
7.4.2 The Inverse Acoustic Generalized Radon Transformation
192(4)
7.4.3 Some Supplements about Inverse Scattering Procedures
196(2)
7.5 Linearized Iterative Inversion of Seismic Reflection Data
198(9)
7.6 The Maximum Entropy Inversion and Inversion for Reservoir Parameters
207(5)
7.6.1 Bayes' Theorem and Maximum Entropy Inversion
207(3)
7.6.2 Probability Density Inversion Based on Statistical Estimation of Rock Physical Properties
210(2)
7.7 Summary
212(3)
Appendix: Finite difference method for solving the acoustic wave equation with velocity and density variant media 215(30)
References 245(4)
Index 249