Muutke küpsiste eelistusi

E-raamat: Regenerative Engineering: Advanced Materials Science Principles

Edited by (University of Connecticut Health Center, Farmington, USA), Edited by (University of Connecticut, Farmington, USA)
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on advances made in both materials science and scaffold development techniques, paying close attention to the latest and state-of-the-art research. Chapters delve into a sweeping variety of specific materials categories, from composite materials to bioactive ceramics, exploring how these materials are specifically designed for regenerative engineering applications. Also included are unique chapters on biologically-derived scaffolding, along with 3D printing technology for regenerative engineering.

Features:











Covers the latest developments in advanced materials for regenerative engineering and medicine.





Each chapter is written by world class researchers in various aspects of this medical technology.





Provides unique coverage of biologically derived scaffolding.





Includes separate chapter on how 3D printing technology is related to regenerative engineering.





Includes extensive references at the end of each chapter to enhance further study.
Contributors vii
Chapter 1 Regenerative Engineering: Advanced Materials Science Principles 1(10)
Mary Badon
Yusuf Khan
1.1 Introduction
1(1)
1.2 Tissue Regeneration and the Role of Regenerative Engineering
2(1)
1.3 The Clinical Relevance and Importance of Regenerative Engineering
3(1)
1.4 The Role of Advanced Materials Science Principles in Regenerative Engineering
4(4)
1.5 Summary
8(1)
References
8(3)
Chapter 2 Polymeric Hydrogels via Click Chemistry for Regenerative Engineering 11(20)
Liangju Kuang
Paul A. Lengemann
Meng Deng
2.1 Introduction
11(1)
2.2 Azide-Alkyne Cycloaddition
12(4)
2.2.1 CuAAC Click Reaction
12(3)
2.2.2 SPAAC Click Reaction
15(1)
2.2.3 Other Types of Metal-Free [ 3+2] Cycloaddition
16(1)
2.3 Thiol-ene Click Reaction
16(5)
2.3.1 Thiol-ene Photo Click Reaction
17(2)
2.3.1.1 Thiol-(Meth)Acrylate Photo Click
18(1)
2.3.1.2 Thiol-Norbornene Photo Click
18(1)
2.3.2 Thiol-Michael-Type Click
19(13)
2.3.2.1 Thiol-(Meth)Acrylate Michael Reaction
19(1)
2.3.2.2 Thiol-Vinyl Sulfone Michael Reaction
19(1)
2.3.2.3 Thiol-Maleimide Michael Reaction
20(1)
2.4 Diels-Alder Reactions
21(3)
2.5 Aldehyde-Hydrazide and Oxime Click Reactions
24(2)
2.6 Conclusions
26(1)
Acknowledgments
26(1)
References
26(5)
Chapter 3 Bioactive Ceramics and Metals for Regenerative Engineering 31(22)
Changchun Zhou
Xiangfeng Li
Junqiu Cheng
Hongsong Fan
Xingdong Zhang
3.1 Bioactive Ceramics
32(6)
3.1.1 Bioactive Ceramics and Their Challenges
32(1)
3.1.2 Bioactive Ceramics with Osteoinductivity for Regenerative Engineering
33(2)
3.1.3 Bioactive Ceramics for Regenerative Engineering
35(1)
3.1.3.1 Calcium Phosphate Bioactive Ceramics
35(1)
3.1.3.2 Bioactive Silicate Ceramics
35(1)
3.1.3.3 Ceramic-Based Composite Scaffolds
36(1)
3.1.4 Processing and Fabrication of Bioactive Ceramics for Regenerative Engineering
36(2)
3.2 Bioactive Metals
38(8)
3.2.1 Bioactive Metal with Osteoinductivity for Regenerative Engineering
39(1)
3.2.2 Biodegradable Metals for Regenerative Engineering
40(2)
3.2.2.1 Degradation Mechanism of Biodegradable Metals
40(1)
3.2.2.2 Types of Biodegradable Metals
41(1)
3.2.3 Biodegradable Metals with Clinical Application
42(3)
3.2.4 New Manufacturing and Processing Techniques of Biomedical Metals
45(1)
3.3 Concluding Remarks and Perspectives
46(1)
References
46(7)
Chapter 4 Substrate Guided Cell Behavior in Regenerative Engineering 53(18)
Mengqian Liu
Shyni Varghese
4.1 Introduction
53(1)
4.2 Designing Biomaterials to Control Cell Functions
54(4)
4.2.1 Functionalizing Synthetic Materials with Cell-Adhesive Moieties
54(1)
4.2.2 Biomaterials to Regulate Growth Factor Signaling
55(1)
4.2.3 Biomaterial Chemistry-Mediated Cellular Responses
56(2)
4.2.4 Mineralization of Biomaterials for Bone-Specific Biochemical Cues
58(1)
4.3 Tuning Matrix Stiffness to Guide Cell Behavior
58(3)
4.4 Designing Synthetic Substrate to Provide Topographical Cues
61(1)
4.5 Conclusions and Future Perspectives
62(1)
References
62(9)
Chapter 5 Bovine Tissue-Scaffold Interface Facilitates in vivo Evaluation of Tissue-Engineered Injectable Devices for Breast Tissue Reconstruction 71(24)
Cheryl T. Gomillion
Karen J.L. Burg
Steven E. Ellis
5.1 Introduction
72(2)
5.2 Materials and Methods
74(7)
5.2.1 Scaffold Fabrication
74(1)
5.2.2 Adipose Tissue Retrieval and Cell Isolation
75(1)
5.2.3 Cell Seeding
75(1)
5.2.4 Cell Viability Assessment
76(1)
5.2.5 Triglyceride Measurement
76(1)
5.2.6 Real-Time Polymerase Chain Reaction
76(1)
5.2.7 Implant Sample Preparation
77(1)
5.2.8 Implantation and Retrieval
78(1)
5.2.9 Histological Processing and Assessment
78(3)
5.2.10 Statistical Analyses
81(1)
5.3 Results
81(5)
5.3.1 Cell Viability Assessment
81(1)
5.3.2 Triglyceride Measurement
81(1)
5.3.3 RT-PCR
82(1)
5.3.4 Histological Assessment
83(3)
5.4 Discussion
86(4)
5.5 Conclusion
90(1)
Acknowledgments
91(1)
References
91(4)
Chapter 6 Application of Nanoscale Materials for Regenerative Engineering of Musculoskeletal Tissues 95(24)
Arijit Bhattacharjee
Garima Lohiya
Aman Mahajan
M. Sriram
Dhirendra S. Katti
6.1 Regenerative Engineering of Musculoskeletal Tissues
96(1)
6.2 Nanoscale Materials
96(1)
6.3 Types of Nanoscale Materials and Their Effect on Cell Behavior
97(9)
6.3.1 Nanofibers
97(2)
6.3.1.1 Methods of Nanofiber Fabrication
97(1)
6.3.1.2 Effects of Nanofibers on Cell Behavior
98(1)
6.3.2 Nanoparticles
99(2)
6.3.2.1 Methods of Nanoparticle Fabrication
99(1)
6.3.2.2 Effect of Nanoparticles on Cell Behavior
100(1)
6.3.3 Nanotubes
101(2)
6.3.3.1 Methods of Nanotube Fabrication
101(1)
6.3.3.2 Effect of Nanotubes on Cell Behavior
102(1)
6.3.4 Nanopatterns
103(1)
6.3.4.1 Methods of Nanopattern Fabrication
103(1)
6.3.4.2 Effect of Nanopatterns on Cell Behavior
104(1)
6.3.5 Nanocomposites
104(2)
6.3.5.1 Methods of Nanocomposite Fabrication
104(1)
6.3.5.2 Effect of Nanocomposites on Cell Behavior
105(1)
6.4 Nanoscale Materials in Musculoskeletal Tissue Engineering
106(4)
6.4.1 Cartilage
106(1)
6.4.2 Bone
107(1)
6.4.3 Ligament and Tendon
108(1)
6.4.4 Muscle
109(1)
6.5 Summary
110(2)
References
112(7)
Chapter 7 3D Bioprinting for Regenerative Engineering 119(20)
Nathan J. Castro
Wei Zhu
Haitao Cui
Se-Jun Lee
Lijie Grace Zhang
7.1 Introduction
119(1)
7.2 3D Printing Techniques
120(5)
7.2.1 Stereolithography
120(2)
7.2.2 Fused Deposition Modeling
122(1)
7.2.3 Selective Laser Sintering
122(1)
7.2.4 Extrusion Bioprinting
123(1)
7.2.5 Inkjet Bioprinting
124(1)
7.3 3D Bioprinting for Complex Tissue Regeneration
125(7)
7.3.1 3D Bioprinting Osteochondral Tissue
125(2)
7.3.2 3D Bioprinting Vascularized Tissue
127(1)
7.3.3 3D Bioprinting for Neural Regeneration
128(3)
7.3.4 New Frontier: 4D Bioprinting
131(1)
7.4 Conclusions and Future Directions
132(1)
Acknowledgments
133(1)
References
133(6)
Chapter 8 Regenerative Engineering of the Human Using Convergence 139(10)
Cato T. Laurencin
Naveen Nagiah
8.1 History of Regenerative Engineering
140(1)
8.2 Regenerative Engineering for Bone Defects
141(2)
8.3 Regenerative Engineering for Anterior Cruciate Ligament Regeneration
143(2)
8.4 Regenerative Engineering for Rotator Cuff Injury
145(1)
References
146(3)
Index 149
Yusuf Khan is an Assistant Professor in both Departments of Biomedical Engineering and Chemical Engineering at the University of Conneticut. He is also an Assistant Professor within the Department of Surgery at the University of Connecticut Health Sciences Center. Dr. Khan was one of the fouding members of the Institute for Regenerative Engineering at the Center. His primary research is in biological materials related to organ regeneration.