Preface |
|
xvii | |
Acknowledgements |
|
xx | |
Notation |
|
xxi | |
Acknowledgements for tables and diagrams |
|
xxx | |
Acronyms and abbreviations |
|
xxxi | |
|
Part I Reinforced concrete |
|
|
1 | (316) |
|
|
3 | (9) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 Loads and load combinations |
|
|
5 | (2) |
|
|
5 | (1) |
|
1.3.2 Serviceability design |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.4 Concrete cover and reinforcement spacing |
|
|
7 | (5) |
|
|
7 | (4) |
|
|
11 | (1) |
|
2 Design properties of materials |
|
|
12 | (6) |
|
|
12 | (2) |
|
2.1.1 Characteristic strengths |
|
|
12 | (1) |
|
2.1.2 Standard strength grades |
|
|
13 | (1) |
|
2.1.3 Initial modulus and other constants |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
17 | (1) |
|
3 Ultimate strength analysis and design for bending |
|
|
18 | (56) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
3.1.3 Ultimate strength method |
|
|
18 | (1) |
|
3.2 Ultimate strength theory |
|
|
19 | (2) |
|
|
19 | (1) |
|
3.2.2 Actual and equivalent stress blocks |
|
|
19 | (2) |
|
3.3 Ultimate strength of a singly reinforced rectangular section |
|
|
21 | (10) |
|
3.3.1 Tension, compression and balanced failure |
|
|
21 | (1) |
|
3.3.2 Balanced steel ratio |
|
|
22 | (1) |
|
3.3.3 Moment equation for tension failure (under-reinforced sections) |
|
|
23 | (1) |
|
3.3.4 Moment equation for compression failure (over-reinforced sections) |
|
|
24 | (1) |
|
3.3.5 Effective moment capacity |
|
|
25 | (1) |
|
3.3.6 Illustrative example for ultimate strength of a singly reinforced rectangular section |
|
|
26 | (2) |
|
3.3.7 Spread of reinforcement |
|
|
28 | (3) |
|
3.4 Design of singly reinforced rectangular sections |
|
|
31 | (4) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (2) |
|
3.5 Doubly reinforced rectangular sections |
|
|
35 | (9) |
|
3.5.1 Criteria for yielding of Asc at failure |
|
|
36 | (1) |
|
|
37 | (2) |
|
3.5.3 Illustrative examples |
|
|
39 | (2) |
|
|
41 | (3) |
|
|
44 | (1) |
|
3.6 Design of doubly reinforced sections |
|
|
44 | (5) |
|
|
44 | (3) |
|
3.6.2 Illustrative example |
|
|
47 | (2) |
|
3.7 T-beams and other flanged sections |
|
|
49 | (12) |
|
|
49 | (1) |
|
3.7.2 Effective flange width |
|
|
50 | (4) |
|
3.7.3 Criteria for T-beams |
|
|
54 | (1) |
|
|
54 | (2) |
|
|
56 | (1) |
|
3.7.6 Doubly reinforced T-sections |
|
|
57 | (1) |
|
3.7.7 Illustrative examples |
|
|
58 | (3) |
|
|
61 | (4) |
|
|
61 | (2) |
|
3.8.2 Illustrative example |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (8) |
|
4 Deflection of beams and crack control |
|
|
74 | (25) |
|
|
74 | (1) |
|
4.2 Deflection formulas, effective span and deflection limits |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
4.3 Short-term (immediate) deflection |
|
|
76 | (7) |
|
4.3.1 Effects of cracking |
|
|
76 | (2) |
|
4.3.2 Branson's effective moment of inertia |
|
|
78 | (2) |
|
|
80 | (1) |
|
4.3.4 Illustrative example |
|
|
80 | (1) |
|
4.3.5 Cantilever and continuous beams |
|
|
81 | (2) |
|
|
83 | (2) |
|
|
83 | (1) |
|
4.4.2 The multiplier method |
|
|
83 | (1) |
|
4.4.3 Illustrative example |
|
|
84 | (1) |
|
4.5 Minimum effective depth |
|
|
85 | (1) |
|
4.6 Total deflection under repeated loading |
|
|
86 | (3) |
|
|
86 | (2) |
|
4.6.2 Illustrative example |
|
|
88 | (1) |
|
|
89 | (6) |
|
|
89 | (1) |
|
4.7.2 Standard provisions |
|
|
90 | (2) |
|
4.7.3 Crak-width formulas and comparison of performances |
|
|
92 | (3) |
|
|
95 | (4) |
|
5 Ultimate strength design for shear |
|
|
99 | (24) |
|
5.1 Transverse shear stress and shear failure |
|
|
99 | (4) |
|
|
99 | (2) |
|
5.1.2 Typical crack patterns and failure modes |
|
|
101 | (1) |
|
5.1.3 Mechanism of shear resistance |
|
|
102 | (1) |
|
5.1.4 Shear reinforcement |
|
|
103 | (1) |
|
5.2 Transverse shear design |
|
|
103 | (10) |
|
|
103 | (2) |
|
5.2.2 Design shear force and the capacity reduction factor |
|
|
105 | (1) |
|
|
105 | (1) |
|
5.2.4 Shear strength of beams without shear reinforcement |
|
|
106 | (1) |
|
5.2.5 Shear strength checks and minimum reinforcement |
|
|
107 | (1) |
|
5.2.6 Design of shear reinforcement |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
110 | (3) |
|
|
113 | (5) |
|
|
113 | (1) |
|
5.3.2 Design shear stress |
|
|
114 | (1) |
|
5.3.3 Shear stress capacity |
|
|
115 | (1) |
|
5.3.4 Shear plane reinforcement and detailing |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
118 | (5) |
|
6 Ultimate strength design for torsion |
|
|
123 | (13) |
|
|
123 | (3) |
|
6.1.1 Origin and nature of torsion |
|
|
123 | (1) |
|
6.1.2 Torsional reinforcement |
|
|
123 | (2) |
|
6.1.3 Transverse reinforcement area and capacity reduction factor |
|
|
125 | (1) |
|
|
126 | (1) |
|
6.3 Checks for reinforcement requirements |
|
|
127 | (1) |
|
6.4 Design for torsional reinforcement |
|
|
127 | (7) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (4) |
|
|
134 | (2) |
|
7 Bond and stress development |
|
|
136 | (12) |
|
|
136 | (2) |
|
|
136 | (1) |
|
7.1.2 Anchorage bond and development length |
|
|
136 | (1) |
|
7.1.3 Mechanism of bond resistance |
|
|
137 | (1) |
|
7.1.4 Effects of bar position |
|
|
138 | (1) |
|
7.2 Design formulas for stress development |
|
|
138 | (5) |
|
7.2.1 Basic and refined development lengths for a bar in tension |
|
|
138 | (3) |
|
7.2.2 Standard hooks and cog |
|
|
141 | (1) |
|
7.2.3 Deformed and plain bars in compression |
|
|
142 | (1) |
|
|
142 | (1) |
|
7.3 Splicing of reinforcement |
|
|
143 | (1) |
|
|
143 | (1) |
|
7.3.2 Bars in compression |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
7.4 Illustrative examples |
|
|
144 | (2) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
146 | (2) |
|
|
148 | (62) |
|
|
148 | (5) |
|
|
148 | (1) |
|
|
149 | (2) |
|
8.1.3 Effects of concentrated load |
|
|
151 | (1) |
|
8.1.4 Moment redistribution |
|
|
152 | (1) |
|
|
153 | (9) |
|
8.2.1 Simplified method of analysis |
|
|
153 | (2) |
|
8.2.2 Reinforcement requirements |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (5) |
|
8.3 Two-way slabs supported on four sides |
|
|
162 | (12) |
|
8.3.1 Simplified method of analysis |
|
|
162 | (6) |
|
8.3.2 Reinforcement requirements for bending |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (3) |
|
8.4 Multispan two-way slabs |
|
|
174 | (8) |
|
|
174 | (2) |
|
|
176 | (1) |
|
8.4.3 Limitations of the simplified method of analysis |
|
|
177 | (1) |
|
8.4.4 Total moment and its distribution |
|
|
178 | (1) |
|
|
179 | (1) |
|
8.4.6 Reinforcement requirements |
|
|
180 | (1) |
|
8.4.7 Shrinkage and temperature steel |
|
|
180 | (2) |
|
8.5 The idealised frame approach |
|
|
182 | (3) |
|
8.5.1 The idealised frame |
|
|
182 | (1) |
|
8.5.2 Structural analysis |
|
|
183 | (1) |
|
8.5.3 Distribution of moments |
|
|
184 | (1) |
|
8.6 Punching shear design |
|
|
185 | (10) |
|
8.6.1 Geometry and definitions |
|
|
185 | (1) |
|
8.6.2 Drop panel and shear head |
|
|
186 | (1) |
|
|
186 | (1) |
|
8.6.4 The ultimate strength |
|
|
187 | (1) |
|
8.6.5 Minimum effective slab thickness |
|
|
187 | (2) |
|
8.6.6 Design of torsion strips |
|
|
189 | (1) |
|
8.6.7 Design of spandrel beams |
|
|
190 | (1) |
|
8.6.8 Detailing of reinforcement |
|
|
191 | (1) |
|
|
191 | (1) |
|
8.6.10 Illustrative example |
|
|
192 | (1) |
|
8.6.11 Semi-empirical approach and layered finite element method |
|
|
193 | (2) |
|
8.7 Slab design for multistorey flat plate structures |
|
|
195 | (13) |
|
8.7.1 Details and idealisation of a three-storey building |
|
|
195 | (1) |
|
|
195 | (2) |
|
|
197 | (1) |
|
8.7.4 Material and other specifications |
|
|
198 | (1) |
|
8.7.5 Structural analysis and moment envelopes |
|
|
199 | (1) |
|
8.7.6 Design strips and design moments |
|
|
200 | (1) |
|
8.7.7 Design of column and middle strips |
|
|
201 | (4) |
|
8.7.8 Serviceability check - total deflection |
|
|
205 | (1) |
|
8.7.9 Reinforcement detailing and layout |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (35) |
|
|
210 | (2) |
|
9.2 Centrally loaded columns |
|
|
212 | (1) |
|
9.3 Columns in uniaxial bending |
|
|
213 | (9) |
|
|
213 | (2) |
|
9.3.2 Tension, compression, decompression and balanced failure |
|
|
215 | (2) |
|
9.3.3 Interaction diagram |
|
|
217 | (3) |
|
9.3.4 Approximate analysis of columns failing in compression |
|
|
220 | (2) |
|
9.3.5 Strengths between decompression and squash points |
|
|
222 | (1) |
|
9.4 Analysis of columns with an arbitrary cross-section |
|
|
222 | (7) |
|
|
222 | (2) |
|
9.4.2 Illustrative example |
|
|
224 | (3) |
|
9.4.3 Semi-graphical method |
|
|
227 | (1) |
|
9.4.4 Illustrative example |
|
|
228 | (1) |
|
9.5 Capacity reduction factor |
|
|
229 | (3) |
|
9.6 Preliminary design procedure |
|
|
232 | (2) |
|
|
232 | (1) |
|
9.6.2 Illustrative example |
|
|
233 | (1) |
|
9.7 Short column requirements |
|
|
234 | (1) |
|
9.8 Moment magnifiers for slender columns |
|
|
235 | (2) |
|
|
235 | (1) |
|
|
236 | (1) |
|
9.9 Biaxial bending effects |
|
|
237 | (2) |
|
9.10 Reinforcement requirements |
|
|
239 | (1) |
|
9.10.1 Limitations and bundled bars |
|
|
239 | (1) |
|
9.10.2 Lateral restrain and core confinement |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (4) |
|
|
245 | (14) |
|
|
245 | (1) |
|
|
246 | (1) |
|
10.3 Walls under vertical loading only |
|
|
247 | (4) |
|
|
247 | (2) |
|
10.3.2 American Concrete Institute code provision |
|
|
249 | (1) |
|
10.3.3 New design formula |
|
|
249 | (1) |
|
10.3.4 Alternative column design method |
|
|
250 | (1) |
|
10.4 Walls subjected to in-plane horizontal forces |
|
|
251 | (2) |
|
10.4.1 General requirements |
|
|
251 | (1) |
|
10.4.2 Design strength in shear |
|
|
251 | (1) |
|
10.4.3 American Concrete Institute recommendations |
|
|
252 | (1) |
|
10.5 Reinforcement requirements |
|
|
253 | (1) |
|
10.6 Illustrative examples |
|
|
253 | (5) |
|
10.6.1 Example 1 - load bearing wall |
|
|
253 | (2) |
|
10.6.2 Example 2 - tilt-up panel |
|
|
255 | (1) |
|
10.6.3 Example 3 - the new strength formula |
|
|
255 | (1) |
|
10.6.4 Example 4 - design shear strength |
|
|
256 | (2) |
|
|
258 | (1) |
|
11 Footings, pile caps and retaining walls |
|
|
259 | (58) |
|
|
259 | (1) |
|
|
260 | (12) |
|
|
260 | (1) |
|
|
261 | (4) |
|
11.2.3 Concentric loading |
|
|
265 | (1) |
|
11.2.4 Asymmetrical footings |
|
|
265 | (1) |
|
|
266 | (6) |
|
|
272 | (13) |
|
|
272 | (1) |
|
11.3.2 Centrally loaded square footings |
|
|
272 | (2) |
|
|
274 | (2) |
|
|
276 | (1) |
|
|
277 | (1) |
|
11.3.6 Reinforcement requirements |
|
|
278 | (1) |
|
|
278 | (7) |
|
|
285 | (6) |
|
11.4.1 Concentric column loading |
|
|
286 | (3) |
|
|
289 | (2) |
|
|
291 | (25) |
|
|
291 | (2) |
|
11.5.2 Stability considerations |
|
|
293 | (4) |
|
11.5.3 Active earth pressre |
|
|
297 | (2) |
|
11.5.4 Design subsoil pressures |
|
|
299 | (2) |
|
11.5.5 Design moments and shear forces |
|
|
301 | (1) |
|
|
302 | (1) |
|
11.5.7 Illustrative example |
|
|
303 | (13) |
|
|
316 | (1) |
|
Part II Prestressed concrete |
|
|
317 | (70) |
|
12 Introduction to prestressed concrete |
|
|
319 | (10) |
|
|
319 | (1) |
|
12.2 Non-engineering examples of prestressing |
|
|
320 | (1) |
|
|
320 | (1) |
|
|
320 | (1) |
|
12.3 Principle of superposition |
|
|
321 | (2) |
|
12.4 Types of prestressing |
|
|
323 | (2) |
|
|
324 | (1) |
|
|
324 | (1) |
|
12.5 Tensile strength of tendons and cables |
|
|
325 | (1) |
|
12.6 Australian Standard precast prestressed concrete bridge girder sections |
|
|
325 | (4) |
|
13 Critical stress state analysis of beams |
|
|
329 | (19) |
|
|
329 | (1) |
|
|
329 | (2) |
|
|
331 | (4) |
|
13.3.1 Standard provisions |
|
|
331 | (1) |
|
13.3.2 Examples of prestress loss due to elastic shortening of concrete |
|
|
332 | (2) |
|
13.3.3 Effective prestress coefficient |
|
|
334 | (1) |
|
13.3.4 Stress equations at transfer and after loss |
|
|
334 | (1) |
|
13.4 Permissible stresses c and ct |
|
|
335 | (1) |
|
13.5 Maximum and minimum external moments |
|
|
336 | (3) |
|
13.6 Case A and Case B prestressing |
|
|
339 | (2) |
|
|
339 | (1) |
|
13.6.2 Applying Case A and Case B |
|
|
340 | (1) |
|
13.7 Critical stress state (CSS) equations |
|
|
341 | (3) |
|
13.7.1 Case A prestressing |
|
|
341 | (1) |
|
13.7.2 Case B prestressing |
|
|
342 | (1) |
|
13.7.3 Summary of Case A and Case B equations |
|
|
343 | (1) |
|
13.8 Application of CSS equations |
|
|
344 | (2) |
|
|
346 | (2) |
|
14 Critical stress state design of beams |
|
|
348 | (19) |
|
14.1 Design considerations |
|
|
348 | (1) |
|
14.2 Formulas and procedures - Case A |
|
|
349 | (3) |
|
14.2.1 Elastic section moduli |
|
|
349 | (1) |
|
14.2.2 Magnel's plot for Case A |
|
|
350 | (1) |
|
|
351 | (1) |
|
14.3 Formulas and procedures - Case B |
|
|
352 | (1) |
|
14.3.1 Elastic section moduli |
|
|
352 | (1) |
|
14.3.2 Magnel's plot for Case B |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
353 | (12) |
|
14.4.1 Simply supported beam |
|
|
353 | (4) |
|
14.4.2 Simple beam with overhang |
|
|
357 | (4) |
|
|
361 | (4) |
|
|
365 | (2) |
|
15 Ultimate strength analysis of beams |
|
|
367 | (11) |
|
|
367 | (1) |
|
15.2 Cracking moment (Mcr) |
|
|
367 | (2) |
|
|
367 | (1) |
|
15.2.2 Illustrative example |
|
|
368 | (1) |
|
15.3 Ultimate moment (Mu) for partially prestressed sections |
|
|
369 | (3) |
|
|
369 | (1) |
|
15.3.2 Sections with bonded tendons |
|
|
370 | (1) |
|
15.3.3 Sections with unbonded tendons |
|
|
371 | (1) |
|
15.4 Ductility requirements - reduced ultimate moment equations |
|
|
372 | (1) |
|
|
372 | (2) |
|
|
372 | (1) |
|
15.5.2 Illustrative example |
|
|
373 | (1) |
|
15.6 Nonrectangular sections |
|
|
374 | (3) |
|
15.6.1 Ultimate moment equations |
|
|
374 | (1) |
|
15.6.2 Illustrative example |
|
|
375 | (2) |
|
|
377 | (1) |
|
16 End blocks for prestressing anchorages |
|
|
378 | (9) |
|
|
378 | (1) |
|
|
378 | (2) |
|
|
380 | (2) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
382 | (1) |
|
|
382 | (1) |
|
|
382 | (3) |
|
|
382 | (1) |
|
16.4.2 Symmetrical prisms and design bursting forces |
|
|
382 | (1) |
|
16.4.3 Design spalling force |
|
|
383 | (1) |
|
16.4.4 Design for bearing stress |
|
|
384 | (1) |
|
16.5 Reinforcement and distribution |
|
|
385 | (1) |
|
|
386 | (1) |
Appendix A Elastic neutral axis |
|
387 | (2) |
Appendix B Critical shear perimeter |
|
389 | (2) |
Appendix C Development of an integrated package for design of reinforced concrete flat plates on personal computer |
|
391 | (7) |
Appendix D Strut-and-tie modelling of concrete structures |
|
398 | (15) |
Appendix E Australian Standard precast prestressed concrete bridge girder sections |
|
413 | (3) |
References |
|
416 | (6) |
Index |
|
422 | |