Muutke küpsiste eelistusi

E-raamat: Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS3600-2009

(Griffith University, Queensland), (Griffith University, Queensland)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Nov-2010
  • Kirjastus: Cambridge University Press
  • ISBN-13: 9780511903892
  • Formaat - PDF+DRM
  • Hind: 83,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Nov-2010
  • Kirjastus: Cambridge University Press
  • ISBN-13: 9780511903892

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Reinforced and Prestressed Concrete is the most comprehensive, up-to-the-minute text for students and instructors in civil and structural engineering, and for practising engineers requiring a full grasp of the latest Australian Concrete Structures Standard, AS3600-2009. Topics are presented in detail, covering the theoretical and practical aspects of analysis and design, with an emphasis on the application of AS3600-2009. The first major national code to embrace the use of high-strength concrete of up to 100 MPa, the latest Standard also includes major technological upgrades, new analysis and design formulas, and new and more elaborate processes. This text addresses all such advances, and features chapters on bending, shear, torsion, bond, deflection and cracking, beams, slabs, columns, walls, footings, pile caps and retaining walls, as well as prestressed beams and end blocks plus an exposition on strut-and-tie modelling.

Muu info

This is the most comprehensive/current text for students using Australian Concrete Structures Standard, AS3600-2009.
Preface xvii
Acknowledgements xx
Notation xxi
Acknowledgements for tables and diagrams xxx
Acronyms and abbreviations xxxi
Part I Reinforced concrete
1(316)
1 Introduction
3(9)
1.1 Historical notes
3(1)
1.2 Design requirements
4(1)
1.3 Loads and load combinations
5(2)
1.3.1 Strength design
5(1)
1.3.2 Serviceability design
6(1)
1.3.3 Application
7(1)
1.4 Concrete cover and reinforcement spacing
7(5)
1.4.1 Cover
7(4)
1.4.2 Spacing
11(1)
2 Design properties of materials
12(6)
2.1 Concrete
12(2)
2.1.1 Characteristic strengths
12(1)
2.1.2 Standard strength grades
13(1)
2.1.3 Initial modulus and other constants
13(1)
2.2 Steel
14(3)
2.3 Unit weight
17(1)
3 Ultimate strength analysis and design for bending
18(56)
3.1 Definitions
18(1)
3.1.1 Analysis
18(1)
3.1.2 Design
18(1)
3.1.3 Ultimate strength method
18(1)
3.2 Ultimate strength theory
19(2)
3.2.1 Basic assumptions
19(1)
3.2.2 Actual and equivalent stress blocks
19(2)
3.3 Ultimate strength of a singly reinforced rectangular section
21(10)
3.3.1 Tension, compression and balanced failure
21(1)
3.3.2 Balanced steel ratio
22(1)
3.3.3 Moment equation for tension failure (under-reinforced sections)
23(1)
3.3.4 Moment equation for compression failure (over-reinforced sections)
24(1)
3.3.5 Effective moment capacity
25(1)
3.3.6 Illustrative example for ultimate strength of a singly reinforced rectangular section
26(2)
3.3.7 Spread of reinforcement
28(3)
3.4 Design of singly reinforced rectangular sections
31(4)
3.4.1 Free design
31(1)
3.4.2 Restricted design
32(1)
3.4.3 Design example
33(2)
3.5 Doubly reinforced rectangular sections
35(9)
3.5.1 Criteria for yielding of Asc at failure
36(1)
3.5.2 Analysis formulas
37(2)
3.5.3 Illustrative examples
39(2)
3.5.4 Other cases
41(3)
3.5.5 Summary
44(1)
3.6 Design of doubly reinforced sections
44(5)
3.6.1 Design procedure
44(3)
3.6.2 Illustrative example
47(2)
3.7 T-beams and other flanged sections
49(12)
3.7.1 General remarks
49(1)
3.7.2 Effective flange width
50(4)
3.7.3 Criteria for T-beams
54(1)
3.7.4 Analysis
54(2)
3.7.5 Design procedure
56(1)
3.7.6 Doubly reinforced T-sections
57(1)
3.7.7 Illustrative examples
58(3)
3.8 Nonstandard sections
61(4)
3.8.1 Analysis
61(2)
3.8.2 Illustrative example
63(2)
3.9 Continuous beams
65(1)
3.10 Problems
66(8)
4 Deflection of beams and crack control
74(25)
4.1 General remarks
74(1)
4.2 Deflection formulas, effective span and deflection limits
75(1)
4.2.1 Formulas
75(1)
4.2.2 Effective span
75(1)
4.2.3 Limits
76(1)
4.3 Short-term (immediate) deflection
76(7)
4.3.1 Effects of cracking
76(2)
4.3.2 Branson's effective moment of inertia
78(2)
4.3.3 Load combinations
80(1)
4.3.4 Illustrative example
80(1)
4.3.5 Cantilever and continuous beams
81(2)
4.4 Long-term deflection
83(2)
4.4.1 General remarks
83(1)
4.4.2 The multiplier method
83(1)
4.4.3 Illustrative example
84(1)
4.5 Minimum effective depth
85(1)
4.6 Total deflection under repeated loading
86(3)
4.6.1 Formulas
86(2)
4.6.2 Illustrative example
88(1)
4.7 Crack control
89(6)
4.7.1 General remarks
89(1)
4.7.2 Standard provisions
90(2)
4.7.3 Crak-width formulas and comparison of performances
92(3)
4.8 Problems
95(4)
5 Ultimate strength design for shear
99(24)
5.1 Transverse shear stress and shear failure
99(4)
5.1.1 Principal stresses
99(2)
5.1.2 Typical crack patterns and failure modes
101(1)
5.1.3 Mechanism of shear resistance
102(1)
5.1.4 Shear reinforcement
103(1)
5.2 Transverse shear design
103(10)
5.2.1 Definitions
103(2)
5.2.2 Design shear force and the capacity reduction factor
105(1)
5.2.3 Maximum capacity
105(1)
5.2.4 Shear strength of beams without shear reinforcement
106(1)
5.2.5 Shear strength checks and minimum reinforcement
107(1)
5.2.6 Design of shear reinforcement
108(2)
5.2.7 Detailing
110(1)
5.2.8 Design example
110(3)
5.3 Longitudinal shear
113(5)
5.3.1 Shear planes
113(1)
5.3.2 Design shear stress
114(1)
5.3.3 Shear stress capacity
115(1)
5.3.4 Shear plane reinforcement and detailing
115(2)
5.3.5 Design example
117(1)
5.4 Problems
118(5)
6 Ultimate strength design for torsion
123(13)
6.1 Introduction
123(3)
6.1.1 Origin and nature of torsion
123(1)
6.1.2 Torsional reinforcement
123(2)
6.1.3 Transverse reinforcement area and capacity reduction factor
125(1)
6.2 Maximum torsion
126(1)
6.3 Checks for reinforcement requirements
127(1)
6.4 Design for torsional reinforcement
127(7)
6.4.1 Design formula
127(1)
6.4.2 Design procedure
128(1)
6.4.3 Detailing
129(1)
6.4.4 Design example
130(4)
6.5 Problems
134(2)
7 Bond and stress development
136(12)
7.1 Introduction
136(2)
7.1.1 General remarks
136(1)
7.1.2 Anchorage bond and development length
136(1)
7.1.3 Mechanism of bond resistance
137(1)
7.1.4 Effects of bar position
138(1)
7.2 Design formulas for stress development
138(5)
7.2.1 Basic and refined development lengths for a bar in tension
138(3)
7.2.2 Standard hooks and cog
141(1)
7.2.3 Deformed and plain bars in compression
142(1)
7.2.4 Bundled bars
142(1)
7.3 Splicing of reinforcement
143(1)
7.3.1 Bars in tension
143(1)
7.3.2 Bars in compression
143(1)
7.3.3 Bundled bars
144(1)
7.3.4 Mesh in tension
144(1)
7.4 Illustrative examples
144(2)
7.4.1 Example 1
144(1)
7.4.2 Example 2
145(1)
7.5 Problems
146(2)
8 Slabs
148(62)
8.1 Introduction
148(5)
8.1.1 One-way slabs
148(1)
8.1.2 Two-way slabs
149(2)
8.1.3 Effects of concentrated load
151(1)
8.1.4 Moment redistribution
152(1)
8.2 One-way slabs
153(9)
8.2.1 Simplified method of analysis
153(2)
8.2.2 Reinforcement requirements
155(1)
8.2.3 Deflection check
156(1)
8.2.4 Design example
157(5)
8.3 Two-way slabs supported on four sides
162(12)
8.3.1 Simplified method of analysis
162(6)
8.3.2 Reinforcement requirements for bending
168(1)
8.3.3 Corner reinforment
169(1)
8.3.4 Deflection check
170(1)
8.3.5 Crack control
171(1)
8.3.6 Design example
171(3)
8.4 Multispan two-way slabs
174(8)
8.4.1 General remarks
174(2)
8.4.2 Design strips
176(1)
8.4.3 Limitations of the simplified method of analysis
177(1)
8.4.4 Total moment and its distribution
178(1)
8.4.5 Punching shear
179(1)
8.4.6 Reinforcement requirements
180(1)
8.4.7 Shrinkage and temperature steel
180(2)
8.5 The idealised frame approach
182(3)
8.5.1 The idealised frame
182(1)
8.5.2 Structural analysis
183(1)
8.5.3 Distribution of moments
184(1)
8.6 Punching shear design
185(10)
8.6.1 Geometry and definitions
185(1)
8.6.2 Drop panel and shear head
186(1)
8.6.3 The basic strength
186(1)
8.6.4 The ultimate strength
187(1)
8.6.5 Minimum effective slab thickness
187(2)
8.6.6 Design of torsion strips
189(1)
8.6.7 Design of spandrel beams
190(1)
8.6.8 Detailing of reinforcement
191(1)
8.6.9 Summary
191(1)
8.6.10 Illustrative example
192(1)
8.6.11 Semi-empirical approach and layered finite element method
193(2)
8.7 Slab design for multistorey flat plate structures
195(13)
8.7.1 Details and idealisation of a three-storey building
195(1)
8.7.2 Loading details
195(2)
8.7.3 Load combinations
197(1)
8.7.4 Material and other specifications
198(1)
8.7.5 Structural analysis and moment envelopes
199(1)
8.7.6 Design strips and design moments
200(1)
8.7.7 Design of column and middle strips
201(4)
8.7.8 Serviceability check - total deflection
205(1)
8.7.9 Reinforcement detailing and layout
206(1)
8.7.10 Comments
207(1)
8.8 Problems
208(2)
9 Columns
210(35)
9.1 Introduction
210(2)
9.2 Centrally loaded columns
212(1)
9.3 Columns in uniaxial bending
213(9)
9.3.1 Strength formulas
213(2)
9.3.2 Tension, compression, decompression and balanced failure
215(2)
9.3.3 Interaction diagram
217(3)
9.3.4 Approximate analysis of columns failing in compression
220(2)
9.3.5 Strengths between decompression and squash points
222(1)
9.4 Analysis of columns with an arbitrary cross-section
222(7)
9.4.1 Iterative approach
222(2)
9.4.2 Illustrative example
224(3)
9.4.3 Semi-graphical method
227(1)
9.4.4 Illustrative example
228(1)
9.5 Capacity reduction factor
229(3)
9.6 Preliminary design procedure
232(2)
9.6.1 Design steps
232(1)
9.6.2 Illustrative example
233(1)
9.7 Short column requirements
234(1)
9.8 Moment magnifiers for slender columns
235(2)
9.8.1 Braced columns
235(1)
9.8.2 Unbraced columns
236(1)
9.9 Biaxial bending effects
237(2)
9.10 Reinforcement requirements
239(1)
9.10.1 Limitations and bundled bars
239(1)
9.10.2 Lateral restrain and core confinement
239(1)
9.10.3 Recommendations
239(1)
9.11 Comments
240(1)
9.12 Problems
241(4)
10 Walls
245(14)
10.1 Introduction
245(1)
10.2 Standard provisions
246(1)
10.3 Walls under vertical loading only
247(4)
10.3.1 Simplified method
247(2)
10.3.2 American Concrete Institute code provision
249(1)
10.3.3 New design formula
249(1)
10.3.4 Alternative column design method
250(1)
10.4 Walls subjected to in-plane horizontal forces
251(2)
10.4.1 General requirements
251(1)
10.4.2 Design strength in shear
251(1)
10.4.3 American Concrete Institute recommendations
252(1)
10.5 Reinforcement requirements
253(1)
10.6 Illustrative examples
253(5)
10.6.1 Example 1 - load bearing wall
253(2)
10.6.2 Example 2 - tilt-up panel
255(1)
10.6.3 Example 3 - the new strength formula
255(1)
10.6.4 Example 4 - design shear strength
256(2)
10.7 Problems
258(1)
11 Footings, pile caps and retaining walls
259(58)
11.1 Introduction
259(1)
11.2 Wall footings
260(12)
11.2.1 General remarks
260(1)
11.2.2 Eccentric loading
261(4)
11.2.3 Concentric loading
265(1)
11.2.4 Asymmetrical footings
265(1)
11.2.5 Design example
266(6)
11.3 Column footings
272(13)
11.3.1 General remarks
272(1)
11.3.2 Centrally loaded square footings
272(2)
11.3.3 Eccentric loading
274(2)
11.3.4 Multiple columns
276(1)
11.3.5 Biaxial bending
277(1)
11.3.6 Reinforcement requirements
278(1)
11.3.7 Design example
278(7)
11.4 Pile caps
285(6)
11.4.1 Concentric column loading
286(3)
11.4.2 Biaxial bending
289(2)
11.5 Retaining walls
291(25)
11.5.1 General remarks
291(2)
11.5.2 Stability considerations
293(4)
11.5.3 Active earth pressre
297(2)
11.5.4 Design subsoil pressures
299(2)
11.5.5 Design moments and shear forces
301(1)
11.5.6 Load combinations
302(1)
11.5.7 Illustrative example
303(13)
11.6 Problems
316(1)
Part II Prestressed concrete
317(70)
12 Introduction to prestressed concrete
319(10)
12.1 General remarks
319(1)
12.2 Non-engineering examples of prestressing
320(1)
12.2.1 Wooden barrel
320(1)
12.2.2 Stack of books
320(1)
12.3 Principle of superposition
321(2)
12.4 Types of prestressing
323(2)
12.4.1 Pretensioning
324(1)
12.4.2 Posttensioning
324(1)
12.5 Tensile strength of tendons and cables
325(1)
12.6 Australian Standard precast prestressed concrete bridge girder sections
325(4)
13 Critical stress state analysis of beams
329(19)
13.1 Assumptions
329(1)
13.2 Notation
329(2)
13.3 Loss of prestress
331(4)
13.3.1 Standard provisions
331(1)
13.3.2 Examples of prestress loss due to elastic shortening of concrete
332(2)
13.3.3 Effective prestress coefficient
334(1)
13.3.4 Stress equations at transfer and after loss
334(1)
13.4 Permissible stresses c and ct
335(1)
13.5 Maximum and minimum external moments
336(3)
13.6 Case A and Case B prestressing
339(2)
13.6.1 Fundamentals
339(1)
13.6.2 Applying Case A and Case B
340(1)
13.7 Critical stress state (CSS) equations
341(3)
13.7.1 Case A prestressing
341(1)
13.7.2 Case B prestressing
342(1)
13.7.3 Summary of Case A and Case B equations
343(1)
13.8 Application of CSS equations
344(2)
13.9 Problems
346(2)
14 Critical stress state design of beams
348(19)
14.1 Design considerations
348(1)
14.2 Formulas and procedures - Case A
349(3)
14.2.1 Elastic section moduli
349(1)
14.2.2 Magnel's plot for Case A
350(1)
14.2.3 Design steps
351(1)
14.3 Formulas and procedures - Case B
352(1)
14.3.1 Elastic section moduli
352(1)
14.3.2 Magnel's plot for Case B
352(1)
14.3.3 Design steps
353(1)
14.4 Design examples
353(12)
14.4.1 Simply supported beam
353(4)
14.4.2 Simple beam with overhang
357(4)
14.4.3 Cantilever beam
361(4)
14.5 Problems
365(2)
15 Ultimate strength analysis of beams
367(11)
15.1 General remarks
367(1)
15.2 Cracking moment (Mcr)
367(2)
15.2.1 Formula
367(1)
15.2.2 Illustrative example
368(1)
15.3 Ultimate moment (Mu) for partially prestressed sections
369(3)
15.3.1 General equations
369(1)
15.3.2 Sections with bonded tendons
370(1)
15.3.3 Sections with unbonded tendons
371(1)
15.4 Ductility requirements - reduced ultimate moment equations
372(1)
15.5 Design procedure
372(2)
15.5.1 Recommended steps
372(1)
15.5.2 Illustrative example
373(1)
15.6 Nonrectangular sections
374(3)
15.6.1 Ultimate moment equations
374(1)
15.6.2 Illustrative example
375(2)
15.7 Problems
377(1)
16 End blocks for prestressing anchorages
378(9)
16.1 General remarks
378(1)
16.2 Pretensioned beams
378(2)
16.3 Posttensioned beams
380(2)
16.3.1 Bursting stress
380(1)
16.3.2 Spalling stress
381(1)
16.3.3 Bearing stress
382(1)
16.3.4 End blocks
382(1)
16.4 End block design
382(3)
16.4.1 Geometry
382(1)
16.4.2 Symmetrical prisms and design bursting forces
382(1)
16.4.3 Design spalling force
383(1)
16.4.4 Design for bearing stress
384(1)
16.5 Reinforcement and distribution
385(1)
16.6 Crack control
386(1)
Appendix A Elastic neutral axis 387(2)
Appendix B Critical shear perimeter 389(2)
Appendix C Development of an integrated package for design of reinforced concrete flat plates on personal computer 391(7)
Appendix D Strut-and-tie modelling of concrete structures 398(15)
Appendix E Australian Standard precast prestressed concrete bridge girder sections 413(3)
References 416(6)
Index 422
Yew-Chaye Loo PhD, FIEAust, FICE, FIStructE, CPEng is Foundation Professor of Civil Engineering at Griffith University. Sanaul Huq Chowdhury PhD, MIEAust, CPEng is Lecturer in Structural Engineering and Mechanics at Griffith University.