Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control. 

Introduction.- Ridesharing.- Reinforcement Learning Prime.- Pricing & Incentives.- Online Matching.- Vehicle Repositioning.- Routing.- Ride-pooling.- Related Methods.- Open Resources.- Challenges and Opportunities.- Closing Remarks.

Zhiwei (Tony) Qin, Ph.D., is a Principal Scientist at Lyft Rideshare Labs. He earned his Ph.D. from Columbia University. His research interests include operations research, machine learning, deep learning, and big data analytics, with applications in smart transportation and E-commerce.





Xiaocheng Tang, Ph.D., is an AI Research Scientist at Meta. He earned his Ph.D. from Lehigh University. His research interests lie at the intersection of machine learning, reinforcement learning, and optimization.





Qingyang Li, Ph.D., is a Senior Engineering Manager at DiDi Autonomous Driving. He earned his Ph.D. from Arizona State University. His research interests include machine learning, deep learning, reinforcement learning, and computer vision.





Jieping Ye, Ph.D. is affiliated with the Alibaba Group. He earned his Ph.D. from the University of Minnesota. His research interests include machine learning, data mining, artificial intelligence, transportation, and biomedical informatics.





Hongtu Zhu, Ph.D. is a Professor in the Department of Biostatics at The University of North Carolina at Chapel Hill. He earned his Ph.D. at The Chinese University of Hong Kong. His research interests include medical imaging analysis, imaging genetics, artificial intelligence, statistics, biostatics, and computational neuroscience.