Muutke küpsiste eelistusi

E-raamat: Relativistic Quantum Mechanics: Wave Equations

  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662034255
  • Formaat - PDF+DRM
  • Hind: 88,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662034255

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Relativistic Quantum Mechanics - Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course.
1. Relativistic Wave Equation for Spin-0 Particles: The Klein-Gordon Equation and Its Applications
1(98)
1.1 The Notation
2(2)
1.2 The Klein-Gordon Equation
4(3)
1.3 The Nonrelativistic Limit
7(1)
1.4 Free Spin-0 Particles
8(4)
1.5 Energy-Momentum Tensor of the Klein-Gordon Field
12(9)
1.6 The Klein-Gordon Equation in Schrodinger Form
21(5)
1.7 Charge Conjugation
26(5)
1.8 Free Spin-0 Particles in the Feshbach-Villars Representation
31(10)
1.9 The Interaction of a Spin-0 Particle with an Electromagnetic Field
41(8)
1.10 Gauge Invariance of the Coupling
49(1)
1.11 The Nonrelativistic Limit with Fields
50(18)
1.12 Interpretation of One-Particle Operators in Relativistic Quantum Mechanics
68(29)
1.13 Biographical Notes
97(2)
2. A Wave Equation for Spin-(1 2) Particles: The Dirac Equation
99(28)
2.1 Free Motion of a Dirac Particle
107(4)
2.2 Single-Particle Interpretation of the Plane (Free) Dirac Waves
111(9)
2.3 Nonrelativistic Limit of the Dirac Equation
120(6)
2.4 Biographical Notes
126(1)
3. Lorentz Covariance of the Dirac Equation
127(22)
3.1 Formulation of Covariance (Form Invariance)
130(10)
3.2 Construction of the XXX Operator for Infinitesimal Lorentz Transformations
140(3)
3.3 Finite Proper Lorentz Transformations
143(1)
3.4 The S Operator for Proper Lorentz Transformations
144(3)
3.5 The Four-Current Density
147(1)
3.6 Biographical Notes
148(1)
4. Spinors Under Spatial Reflection
149(2)
5. Bilinear Covariants of the Dirac Spinors
151(6)
5.1 Biographical Notes
156(1)
6. Another Way of Constructing Solutions of the Free Dirac Equation: Construction by Lorentz Transformations
157(20)
6.1 Plane Waves in Arbitrary Directions
161(4)
6.2 The General Form of the Free Solutions and Their Properties
165(9)
6.3 Polarized Electrons in Relativistic Theory
174(5)
7. Projection Operators for Energy and Spin
177(6)
7.1 Simultaneous Projections of Energy and Spin
181(2)
8. Wave Packets of Plane Dirac Waves
183(14)
9. Dirac Particles in External Fields: Examples and Problems
197(64)
10. The Two-Centre Dirac Equation
261(16)
11. The Foldy-Wouthuysen Representation for Free Particles
277(14)
11.1 The Foldy-Wouthuysen Representation in the Presence of External Fields
285(6)
12. The Hole Theory
291(34)
12.1 Charge Conjugation
299(10)
12.2 Charge Conjugation of Eigenstates with Arbitrary Spin and Momentum
309(1)
12.3 Charge Conjugation of Bound States
310(2)
12.4 Time Reversal and PCT Symmetry
312(11)
12.5 Biographical Notes
323(2)
13. Klein's Paradox
325(8)
14. The Weyl Equation - The Neutrino
333(14)
15. Wave Equations for Particles with Arbitrary Spins
347(42)
15.1 Particles with Finite Mass
347(8)
15.2 Massless Particles
355(4)
15.3 Spin-1 Fields for Particles with Finite Mass: Proca Equations
359(2)
15.4 Kemmer Equation
361(3)
15.5 The Maxwell Equations
364(19)
15.6 Spin-(3 2) Fields
383(5)
15.7 Biographical Notes
388(1)
16. Lorentz Invariance and Relativistic Symmetry Principles
389(28)
16.1 Orthogonal Transformations in Four Dimensions
389(1)
16.2 Infinitesimal Transformations and the Proper Subgroup of O(4)
390(6)
16.3 Classification of the Subgroups of O(4)
396(2)
16.4 The Inhomogeneous Lorentz Group
398(2)
16.5 The Conformal Group
400(6)
16.6 Representations of the Four-Dimensional Orthogonal Group and Its Subgroups
402(4)
16.6.1 Tensor Representation of the Proper Groups
402(1)
16.6.2 Spinor Representations
403(3)
16.7 Representation of SL(2, C)
406(1)
16.8 Representations of SO(3, R)
407(1)
16.9 Representations of the Lorentz Group L(p)
408(2)
16.10 Spin and the Rotation Group
410(5)
16.11 Biographical Notes
415(2)
Subject Index 417