CD-ROM Contents |
|
xiii | |
|
List of Figures and Tables |
|
|
xvii | |
|
Chapter 1 Introduction to Reliability and the Text |
|
|
1 | (8) |
|
|
1 | (1) |
|
2.0 Approach Taken by Text |
|
|
2 | (3) |
|
3.0 Topic and Chapter Summary |
|
|
5 | (4) |
|
Chapter 2 Basic Generic Reliability Relationships |
|
|
9 | (24) |
|
1.0 The Cumulative Distribution Function (CDF), F(x) |
|
|
9 | (3) |
|
2.0 The Reliability Function, R(t) |
|
|
12 | (3) |
|
3.0 The Failure Rate or Hazard Function, h(t) |
|
|
15 | (2) |
|
4.0 The Cumulative Hazard Function, H(t) |
|
|
17 | (1) |
|
5.0 The Average Failure Rate, AFR(t1, t2) or AFR(τ) |
|
|
18 | (1) |
|
6.0 The Mean Time to Failure, MTTF |
|
|
19 | (1) |
|
7.0 Hazard Function, h(t), Modeling |
|
|
20 | (1) |
|
8.0 DFR, IFR, and Constant Failure Rates and the "Bathtub Curve" |
|
|
21 | (1) |
|
9.0 Failure Rate or Rate of Occurrence of Failures (ROCOF) |
|
|
22 | (2) |
|
10.0 Aspects of Reliability Data |
|
|
24 | (6) |
|
10.1 Complete and Censored Data |
|
|
24 | (3) |
|
10.2 Interval-Censored Data |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
11.0 Probability Distribution Functions |
|
|
30 | (1) |
|
12.0 Generic Reliability Relationships |
|
|
31 | (2) |
|
Chapter 3 Some Useful Discrete Distributions for Reliability Analysis |
|
|
33 | (46) |
|
|
33 | (1) |
|
2.0 Discrete Probability Distribution Functions |
|
|
34 | (45) |
|
2.1 Hypergeometric Distribution Function |
|
|
34 | (11) |
|
2.2 Binomial Distribution Function |
|
|
45 | (6) |
|
2.3 The f Binomial Function---Hypergeometric Approximation |
|
|
51 | (1) |
|
2.4 The Negative Binomial Distribution Function |
|
|
52 | (12) |
|
2.5 The Geometric Distribution Function |
|
|
64 | (5) |
|
2.6 The Poisson Distribution Function |
|
|
69 | (10) |
|
Chapter 4 Point and Interval Estimation for Discrete Distributions |
|
|
79 | (30) |
|
|
79 | (2) |
|
2.0 Hypergeometric and Negative Hypergeometric Distributions |
|
|
81 | (9) |
|
2.1 Example 4-1 Hypergeometric Confidence Intervals |
|
|
83 | (3) |
|
2.2 Example 4-2 Hypergeometric Confidence Interval Computations |
|
|
86 | (3) |
|
2.3 Negative Hypergeometric |
|
|
89 | (1) |
|
3.0 Binomial Distribution |
|
|
90 | (8) |
|
3.1 Example 4-4 Confidence Limits and Intervals for Binomial Proportion |
|
|
93 | (3) |
|
3.2 Example 4-5 Confidence Intervals for Binomial Proportion via Minitab |
|
|
96 | (2) |
|
4.0 Negative Binomial Distribution |
|
|
98 | (5) |
|
4.1 Example 4-6 Confidence Limits and Intervals for Negative Binomial |
|
|
100 | (2) |
|
4.2 Example 4-7 Confidence Intervals for Negative Binomial Proportion via Minitab |
|
|
102 | (1) |
|
|
103 | (6) |
|
5.1 Example 4-8 Poisson Confidence Limits |
|
|
106 | (1) |
|
5.2 Example 4-9 Confidence Intervals for Poisson via Minitab |
|
|
107 | (2) |
|
Chapter 5 Linear Rectification of Reliability Models For Least Squares Estimation of Parameters |
|
|
109 | (36) |
|
|
109 | (1) |
|
2.0 Least Squares Procedure |
|
|
109 | (11) |
|
|
112 | (8) |
|
3.0 Exponential Distribution |
|
|
120 | (8) |
|
3.1 Example 5-2---CDF Method---Complete Data |
|
|
121 | (1) |
|
3.2 Example 5-2---CDF Method---Censored Data |
|
|
122 | (1) |
|
3.3 Example 5-2---Cum Hazard Rate Method---Complete Data |
|
|
123 | (2) |
|
3.4 Example 5-2---Cum Hazard Rate Method---Censored Data |
|
|
125 | (1) |
|
3.5 Example 5-2---Readout or Interval Data Analysis via Least Squares---Complete |
|
|
125 | (1) |
|
3.6 Example 5-2---Readout or Interval Data Analysis via Least Squares---Censored |
|
|
126 | (1) |
|
3.7 Approximate Parameter Estimation from Graphs---Exponential |
|
|
127 | (1) |
|
4.0 Normal and Lognormal Distributions |
|
|
128 | (5) |
|
|
128 | (2) |
|
4.2 Lognormal Distribution |
|
|
130 | (3) |
|
|
133 | (4) |
|
5.1 Example 5-5---CDF Method---Complete Data |
|
|
134 | (1) |
|
5.2 Example 5-5---CDF Method---Censored Data |
|
|
135 | (1) |
|
5.3 Example 5-7---CDF Method---Interval Data with Truncation |
|
|
135 | (1) |
|
5.4 Approximate Parameter Estimation from Graphs---Weibull |
|
|
136 | (1) |
|
6.0 Extreme-Value Distributions |
|
|
137 | (2) |
|
6.1 Example 5-6---CDF Method---Complete Data |
|
|
138 | (1) |
|
7.0 Logistic and Log-Logistic Distributions |
|
|
139 | (2) |
|
7.1 Example 5-7---CDF Method---Complete Data |
|
|
140 | (1) |
|
8.0 Minitab's Simulation Capabilities |
|
|
141 | (4) |
|
8.1 Change of Variable and the Probability Integral Transformation |
|
|
142 | (3) |
|
Chapter 6 Exponential, Gamma, and Chi-Square (Χ2) Distributions |
|
|
145 | (46) |
|
|
145 | (1) |
|
2.0 The Exponential Distribution |
|
|
146 | (9) |
|
2.1 The Exponential Average Failure Rate, AFR(t1, t2) or AFR(τ) |
|
|
148 | (1) |
|
2.2 Mean Time to Failure for the Exponential Model |
|
|
148 | (2) |
|
2.3 Percentile Function and Median, Mean, and Variance |
|
|
150 | (1) |
|
2.4 Lack of Memory for the Exponential Model |
|
|
151 | (1) |
|
2.5 Failure Rate Scaling Units |
|
|
152 | (1) |
|
2.6 The Exponential Distribution and System Reliability---Closure Property |
|
|
153 | (2) |
|
3.0 The Gamma Distribution |
|
|
155 | (4) |
|
3.1 The Gamma, Poisson, and Negative Binomial Relationships |
|
|
157 | (2) |
|
4.0 The Chi-square (Χ2) Distribution |
|
|
159 | (14) |
|
4.1 Goodness-of-Fit Tests |
|
|
162 | (11) |
|
5.0 Point and Interval Estimation for the Exponential Distribution |
|
|
173 | (18) |
|
5.1 Confidence Limits and Intervals for Parameters λ and θ |
|
|
175 | (6) |
|
5.2 Confidence Limits and Intervals for Reliability |
|
|
181 | (1) |
|
5.3 The Case of Zero Failures |
|
|
182 | (4) |
|
5.4 Test Characteristics Determination---Planning |
|
|
186 | (3) |
|
5.5 Exponential Distribution Analysis via Minitab |
|
|
189 | (1) |
|
5.6 Exponential Distribution Simulation |
|
|
190 | (1) |
|
Chapter 7 Weibull and Extreme-Value Distributions |
|
|
191 | (24) |
|
|
191 | (1) |
|
2.0 The Weibull Distribution |
|
|
192 | (14) |
|
2.1 The Weibull Average Failure Rate, AFR(t1, t2) or AFR(T) |
|
|
197 | (1) |
|
2.2 Mean Time to Failure (MTTF) for the Weibull Distribution |
|
|
197 | (1) |
|
2.3 Percentile Function, Median, and Variance |
|
|
198 | (1) |
|
2.4 The Weibull Distribution and System Reliability---Closure Property |
|
|
199 | (2) |
|
2.5 Point and Interval Estimation for the Weibull Distribution |
|
|
201 | (2) |
|
2.6 Weibull Distribution Reliability/Survival Examples |
|
|
203 | (3) |
|
3.0 The Smallest Extreme-Value Distribution |
|
|
206 | (7) |
|
3.1 The Principal Functions |
|
|
207 | (2) |
|
3.2 The SEV Average Failure Rate, AFR(t1, t2) or AFR(T) |
|
|
209 | (1) |
|
3.3 Mean, Median, Mode, Variance, and Percentile Function |
|
|
210 | (1) |
|
3.4 SEV Distribution Estimation and Examples |
|
|
211 | (2) |
|
4.0 Weibull and SEV Distribution Simulation |
|
|
213 | (2) |
|
Chapter 8 Normal and Lognormal Distributions |
|
|
215 | (22) |
|
|
215 | (1) |
|
2.0 The Normal Distribution |
|
|
216 | (10) |
|
2.1 Mean, Median, Mode, Variance, and Percentile Function |
|
|
219 | (1) |
|
2.2 The Central Limit Theorem and Its Practical Consequences |
|
|
220 | (2) |
|
2.3 Strength-Stress Analysis via Normal Distributions |
|
|
222 | (2) |
|
2.4 Point and Interval Estimation for the Normal Distribution |
|
|
224 | (1) |
|
2.5 Normal Distribution Reliability/Survival Example |
|
|
225 | (1) |
|
3.0 The Lognormal Distribution |
|
|
226 | (8) |
|
3.1 Mean, Median, Mode, Variance, and Percentile Function |
|
|
230 | (1) |
|
3.2 Point and Interval Estimation for the Lognormal Distribution |
|
|
231 | (1) |
|
3.3 Lognormal Distribution Reliability/Survival Example |
|
|
232 | (2) |
|
4.0 Normal and Lognormal Distribution Simulation |
|
|
234 | (3) |
|
Chapter 9 Logistic and Log-Logistic Distributions |
|
|
237 | (16) |
|
|
237 | (1) |
|
2.0 The Logistic Distribution |
|
|
238 | (7) |
|
2.1 Mean, Median, Mode, Variance, and Percentile Function |
|
|
241 | (1) |
|
2.2 Point and Interval Estimation for the Logistic Distribution |
|
|
242 | (1) |
|
2.3 Logistic Distribution Reliability/Survival Example |
|
|
243 | (2) |
|
3.0 The Log-Logistic Distribution |
|
|
245 | (6) |
|
3.1 Mean, Median, Mode, Variance, and Percentile Function |
|
|
248 | (2) |
|
3.2 Point and Interval Estimation for the Logistic Distribution |
|
|
250 | (1) |
|
4.0 Logistic and Log-Logistic Distribution Simulation |
|
|
251 | (2) |
|
Chapter 10 Systems Reliability |
|
|
253 | (14) |
|
|
253 | (1) |
|
|
254 | (2) |
|
3.0 Parallel or Active Redundancy Systems |
|
|
256 | (4) |
|
3.1 Parallel or Active Redundancy Systems, k out of n |
|
|
258 | (1) |
|
3.2 Parallel or Active Redundancy Shared Load Systems |
|
|
259 | (1) |
|
4.0 Standby Redundancy Systems |
|
|
260 | (4) |
|
5.0 Larger Systems---Series and Parallel Subsystems Combined |
|
|
264 | (1) |
|
|
265 | (2) |
|
Chapter 11 Reliability of Repairable Systems |
|
|
267 | (32) |
|
|
267 | (2) |
|
2.0 Example 11-1 System Age--Inter-arrival Time--Data Analysis |
|
|
269 | (4) |
|
3.0 Homogeneous Poisson Process |
|
|
273 | (7) |
|
4.0 Non-Homogeneous Poisson Process, Power-Law Model, and Trend Tests |
|
|
280 | (17) |
|
|
281 | (5) |
|
|
286 | (11) |
|
|
297 | (2) |
|
Chapter 12 Reliability Determination via Accelerated Life Testing |
|
|
299 | (22) |
|
|
299 | (2) |
|
2.0 Acceleration Factors and Relationships |
|
|
301 | (6) |
|
2.1 Example 12-1 Multiple Accelerated Levels Analysis |
|
|
304 | (3) |
|
|
307 | (4) |
|
4.0 Inverse Power Law Model |
|
|
311 | (4) |
|
5.0 The General Eyring Model and Useful Two-Stress Forms |
|
|
315 | (4) |
|
|
319 | (2) |
References |
|
321 | (10) |
Index |
|
331 | |