Muutke küpsiste eelistusi

E-raamat: Reliability Design of Mechanical Systems: A Guide for Mechanical and Civil Engineers

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Jan-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319508290
  • Formaat - EPUB+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Jan-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319508290

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduction in failure rate.

1 Introduction to Reliability Design of Mechanical/Civil System
1(6)
1.1 Introduction
1(6)
2 Reliability Disasters and Its Assessment Significance
7(28)
2.1 Introduction
7(3)
2.2 Reliability Disasters
10(10)
2.2.1 Versailles Rail Accident in 1842
12(1)
2.2.2 Tacoma Narrows Bridge in 1940
13(1)
2.2.3 De Havilland DH 106 Comet in 1953
14(1)
2.2.4 G Company and M Company Rotary Compressor Recall in 1981
15(2)
2.2.5 Firestone and Ford Tire in 2000
17(1)
2.2.6 Toshiba Satellite Notebook and Battery Overheating Problem in 2007
18(1)
2.2.7 Toyota Motor Recalls in 2009
19(1)
2.3 Development of Reliability Methodologies in History
20(15)
2.3.1 In the Early of 20s Century---Starting Reliability Studies
20(4)
2.3.2 In the World War II---New Electronics Failure in Military
24(2)
2.3.3 In the End of World War II and 1950s---Starting the Reliability Engineering
26(4)
2.3.4 In the 1960s and Present: Mature of Reliability Methodology---Physics of Failure (PoF)
30(4)
References
34(1)
3 Modern Definitions in Reliability Engineering
35(26)
3.1 Introduction
35(2)
3.1.1 Bathtub Curve
36(1)
3.2 Fundamentals in Probability Theory
37(7)
3.2.1 Probability
38(2)
3.2.2 Probability Distributions
40(4)
3.3 Reliability Lifetime Metrics
44(5)
3.3.1 Mean Time to Failure (MTTF)
44(1)
3.3.2 Mean Time Between Failure (MTBF)
45(1)
3.3.3 Mean Time to Repair (MTTR)
46(1)
3.3.4 BX% Life
46(1)
3.3.5 The Inadequacy of the MTTF (or MTBF) and the Alternative Metric BX Life
47(2)
3.4 Statistical Distributions
49(3)
3.4.1 Poisson Distributions
49(2)
3.4.2 Exponential Distributions
51(1)
3.5 Weibull Distributions and Its Applications
52(9)
3.5.1 Introduction
52(2)
3.5.2 Shape Parameters β
54(1)
3.5.3 Confidence Interval
54(1)
3.5.4 A Plotting Method on Weibull Probability Paper
55(1)
3.5.5 Probability Plotting for the Weibull Distribution
56(3)
Reference
59(2)
4 Failure Mechanics, Design, and Reliability Testing
61(46)
4.1 Introduction
61(2)
4.2 Failure Mechanics and Designs
63(7)
4.2.1 Product Design---Intended Functions
64(2)
4.2.2 Specified Design Lifetime
66(1)
4.2.3 Dimensional Differences Between Quality Defects and Failures
67(1)
4.2.4 Classification of Failures
68(2)
4.3 Failure Mode and Effect Analysis (FMEA)
70(9)
4.3.1 Introduction
70(2)
4.3.2 Types of FMEA
72(1)
4.3.3 System-Level FMEA
72(1)
4.3.4 Design-Level FMEA
73(1)
4.3.5 Process-Level FMEA
73(1)
4.3.6 Steps for Performing FMEA
74(5)
4.4 Fault Tree Analysis (FTA)
79(6)
4.4.1 Concept of FTA
79(4)
4.4.2 Reliability Evaluation of Standard Configuration
83(2)
4.5 Robust Design (or Taguchi Methods)
85(9)
4.5.1 A Specific Loss Function
86(3)
4.5.2 Robust Design Process
89(1)
4.5.3 Parameter (Measure) Design
90(1)
4.5.4 Tolerance Design
90(1)
4.5.5 A Parameter Diagram (P-Diagram)
91(1)
4.5.6 Taguchi's Design of Experiment (DOE)
91(2)
4.5.7 Inefficiencies of Taguchi's Designs
93(1)
4.6 Reliability Testing
94(13)
4.6.1 Introduction
94(1)
4.6.2 Maximum Likelihood Estimation
95(2)
4.6.3 Time-to-Failure Models
97(3)
4.6.4 Reliability Testing
100(7)
5 Load Analysis
107(32)
5.1 Introduction
107(1)
5.2 Modeling of Mechanical System
108(4)
5.2.1 Introduction
108(1)
5.2.2 D'Alembert's Modeling for Automobile
109(3)
5.3 Bond Graph Modeling
112(15)
5.3.1 Introduction
112(1)
5.3.2 Basic Elements, Energy Relations, and Causality of Bond Graph
113(5)
5.3.3 Case Study: Hydrostatic Transmission (HST) in Seaborne Winch
118(6)
5.3.4 Case Study: Failure Analysis and Redesign of a Helix Upper Dispenser
124(3)
5.4 Load Spectrum and Rain-Flow Counting
127(12)
5.4.1 Introduction
127(2)
5.4.2 Rain-Flow Counting
129(2)
5.4.3 Goodman Relation
131(1)
5.4.4 Palmgren-Miner's Law for Cumulative Damage
132(5)
References
137(2)
6 Mechanical System Failures
139(32)
6.1 Introduction
139(3)
6.2 Mechanism of Slip
142(2)
6.3 Facture Failure
144(2)
6.4 Fatigue Failure
146(13)
6.4.1 Introduction
146(1)
6.4.2 Type of Fatigue Loading
147(3)
6.4.3 Stress Concentration at Crack Tip
150(2)
6.4.4 Crack Propagation and Fracture Toughness
152(1)
6.4.5 Crack Growth Rates
153(2)
6.4.6 Ductile--Brittle Transition Temperature (DBTT)
155(2)
6.4.7 Fatigue Analysis
157(2)
6.5 Stress--Strength Analysis
159(1)
6.6 Failure Analysis
160(11)
6.6.1 Introduction
160(2)
6.6.2 Procedure of Failure Analysis
162(2)
6.6.3 Case Study: PAS (Photo Angle Sensor) in Automobile
164(3)
6.6.4 Fracture Faces of Product Subjected to a Variety of Loads in Fields
167(2)
References
169(2)
7 Parametric Accelerated Life Testing in Mechanical/Civil System
171(50)
7.1 Introduction
171(1)
7.2 Reliability Design in Mechanical System
172(3)
7.3 Reliability Block Diagram and Its Connection in Product
175(1)
7.4 Reliability Allocation of Product
176(8)
7.4.1 Introduction
176(1)
7.4.2 Reliability Allocation of the Product
177(1)
7.4.3 Product Breakdown
178(6)
7.5 Failure Mechanics, Design, and Reliability Testing
184(3)
7.6 Parametric Accelerated Life Testing
187(11)
7.6.1 Acceleration Factor (AF)
188(5)
7.6.2 Derivation of General Sample Size Equation
193(3)
7.6.3 Derivation of Approximate Sample Size Equation
196(2)
7.7 The Reliability Design of Mechanical System and Its Verification
198(8)
7.7.1 Introduction
198(2)
7.7.2 Reliability Quantitative (RQ) Specifications
200(4)
7.7.3 Conceptual Framework of Specifications for Quality Assurance
204(2)
7.8 Testing Equipment for Quality and Reliability
206(15)
7.8.1 Introduction
206(3)
7.8.2 Procedure of Testing Equipment Development (Example: Solenoid Valve Tester)
209(9)
References
218(3)
8 Parametric ALT and Its Case Studies
221(86)
8.1 Failure Analysis and Redesign of Ice Maker
221(8)
8.2 Residential Sized Refrigerators During Transportation
229(4)
8.3 Water Dispenser Lever in a Refrigerator
233(9)
8.4 Refrigerator Compressor Subjected to Repetitive Loads
242(11)
8.5 Hinge Kit System (HKS) in a Kimchi Refrigerator
253(10)
8.6 Refrigerator Drawer System
263(5)
8.7 Compressor Suction Reed Valve
268(11)
8.8 Failure Analysis and Redesign of the Evaporator Tubing
279(9)
8.9 Compressor with Redesigned Rotor and Stator
288(8)
8.10 French Refrigerator Drawer System
296(11)
9 Parametric ALT: A Powerful Tool for Future Engineering Development
307(3)
Reference 310