Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 164,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book divides the engineering reliability process into multiple parts. Part I focuses on system reliability estimation for time independent and time dependent models, helping engineers create a "firm" design. Part II presents the concept of constructing the likelihood function and its use in estimating the parameters of a failure time distribution. This aids the reader in assembling necessary components and configures them to achieve desired reliability objectives, conducting reliability tests on components and using field data from similar components. Part III addresses Physics of Failures, Mechanical Reliability and System Resilience. Finally, Part IV of the book focuses on ensuring reliability objectives by providing preventive and scheduled maintenance and warranty policies."--

Get a firm handle on the engineering reliability process with this insightful and complete resource

The newly and thoroughly revised 3rd Edition of Reliability Engineering delivers a comprehensive and insightful analysis of this crucial field. Accomplished author, professor, and engineer, Elsayed. A. Elsayed includes new examples and end-of-chapter problems to illustrate concepts, new chapters on resilience and the physics of failure, revised chapters on reliability and hazard functions, and more case studies illustrating the approaches and methodologies described within.

The book combines analyses of system reliability estimation for time independent and time dependent models with the construction of the likelihood function and its use in estimating the parameters of failure time distribution. It concludes by addressing the physics of failures, mechanical reliability, and system resilience, along with an explanation of how to ensure reliability objectives by providing preventive and scheduled maintenance and warranty policies.

This new edition of Reliability Engineering covers a wide range of topics, including:

  • Reliability and hazard functions, like the Weibull Model, the Exponential Model, the Gamma Model, and the Log-Logistic Model, among others
  • System reliability evaluations, including parallel-series, series-parallel, and mixed parallel systems
  • The concepts of time- and failure-dependent reliability within both repairable and non-repairable systems
  • Parametric reliability models, including types of censoring, and the Exponential, Weibull, Lognormal, Gamma, Extreme Value, Half-Logistic, and Rayleigh Distributions

Perfect for first-year graduate students in industrial and systems engineering, Reliability Engineering, 3rd Edition also belongs on the bookshelves of practicing professionals in research laboratories and defense industries. The book offers a practical and approachable treatment of a complex area, combining the most crucial foundational knowledge with necessary and advanced topics.

Preface xi
Prelude xv
Chapter 1 Reliability and Hazard Functions
1(94)
1.1 Introduction
1(4)
1.2 Reliability Definition and Estimation
5(11)
1.3 Hazard Functions
16(41)
1.4 Multivariate Hazard Rate
57(3)
1.5 Competing Risk Model and Mixture of Failure Rates
60(8)
1.6 Discrete Probability Distributions
68(3)
1.7 Mean Time to Failure
71(3)
1.8 Mean Residual Life
74(2)
1.9 Time of First Failure
76(19)
Problems
79(12)
References
91(4)
Chapter 2 System Reliability Evaluation
95(90)
2.1 Introduction
95(1)
2.2 Reliability Block Diagrams
96(3)
2.3 Series Systems
99(2)
2.4 Parallel Systems
101(2)
2.5 Parallel-Series, Series-Parallel, and Mixed-Parallel Systems
103(10)
2.6 Consecutive-k-out-of-n: F System
113(8)
2.7 Reliability of k-out-of-n Systems
121(2)
2.8 Reliability of k-out-of-n Balanced Systems
123(2)
2.9 Complex Reliability Systems
125(18)
2.10 Special Networks
143(1)
2.11 Mukistate Models
144(6)
2.12 Redundancy
150(4)
2.13 Importance Measures of Components
154(11)
2.14 Weighted Importance Measures of Components
165(20)
Problems
167(15)
References
182(3)
Chapter 3 Time- and Failure-Dependent Reliability
185(66)
3.1 Introduction
185(1)
3.2 Nonrepairable Systems
185(9)
3.3 Mean Time to Failure
194(10)
3.4 Repairable Systems
204(11)
3.5 Availability
215(8)
3.6 Dependent Failures
223(5)
3.7 Redundancy and Standby
228(23)
Problems
238(9)
References
247(4)
Chapter 4 Estimation Methods of the Parameters
251(50)
4.1 Introduction
251(1)
4.2 Method of Moments
252(8)
4.3 The Likelihood Function
260(18)
4.4 Method of Least Squares
278(6)
4.5 Bayesian Approach
284(4)
4.6 Bootstrap Method
288(2)
4.7 Generation of Failure Time Data
290(11)
Problems
292(6)
References
298(3)
Chapter 5 Parametric Reliability Models
301(92)
5.1 Introduction
301(1)
5.2 Approach 1: Historical Data
302(1)
5.3 Approach 2: Operational Life Testing
303(1)
5.4 Approach 3: Burn-in Testing
303(1)
5.5 Approach 4: Accelerated Life Testing
304(1)
5.6 Types of Censoring
305(3)
5.7 The Exponential Distribution
308(14)
5.8 The Rayleigh Distribution
322(9)
5.9 The Weibull Distribution
331(12)
5.10 The Lognormal Distribution
343(7)
5.11 The Gamma Distribution
350(7)
5.12 The Extreme Value Distribution
357(3)
5.13 The Half-Logistic Distribution
360(7)
5.14 The Frechet Distribution
367(2)
5.15 The Birnbaum-Saunders Distribution
369(3)
5.16 Linear Models
372(2)
5.17 Multicensored Data
374(19)
Problems
378(11)
References
389(4)
Chapter 6 Accelerated Life Testing
393(88)
6.1 Introduction
393(1)
6.2 Types of Reliability Testing
394(9)
6.3 Accelerated Life Testing
403(3)
6.4 ALT Models
406(14)
6.5 Statistics-Based Models: Nonparametric
420(17)
6.6 Physics-Statistics-Based Models
437(9)
6.7 Physics-Experimental-Based Models
446(3)
6.8 Degradation Models
449(4)
6.9 Statistical Degradation Models
453(6)
6.10 Accelerated Life Testing Plans
459(22)
Problems
463(13)
References
476(5)
Chapter 7 Physics of Failures
481(46)
7.1 Introduction
481(1)
7.2 Fault Tree Analysis
481(7)
7.3 Failure Modes and Effects Analysis
488(2)
7.4 Stress-Strength Relationship
490(2)
7.5 PoF: Failure Time Models
492(20)
7.6 PoF: Degradation Models
512(15)
Problems
519(5)
References
524(3)
Chapter 8 System Resilience
527(36)
8.1 Introduction
527(1)
8.2 Resilience Overview
528(1)
8.3 Multi-Hazard
528(4)
8.4 Resilience Modeling
532(3)
8.5 Resilience Definitions and Attributes
535(1)
8.6 Resilience Quantification
536(6)
8.7 Importance Measures
542(2)
8.8 Cascading Failures
544(2)
8.9 Cyber Networks
546(17)
Problems
557(2)
References
559(4)
Chapter 9 Renewal Processes and Expected Number of Failures
563(58)
9.1 Introduction
563(1)
9.2 Parametric Renewal Function Estimation
564(14)
9.3 Nonparametric Renewal Function Estimation
578(10)
9.4 Alternating Renewal Process
588(3)
9.5 Approximations of M(t)
591(3)
9.6 Other Types of Renewal Processes
594(1)
9.7 The Variance of the Number of Renewals
595(6)
9.8 Confidence Intervals for the Renewal Function
601(3)
9.9 Remaining Life at Time t
604(2)
9.10 Poisson Processes
606(3)
9.11 Laplace Transform and Random Variables
609(12)
Problems
611(8)
References
619(2)
Chapter 10 Maintenance and Inspection
621(58)
10.1 Introduction
621(1)
10.2 Preventive Maintenance and Replacement Models: Cost Minimization
622(9)
10.3 Preventive Maintenance and Replacement Models: Downtime Minimization
631(3)
10.4 Minimal Repair Models
634(5)
10.5 Optimum Replacement Intervals for Systems Subject to Shocks
639(3)
10.6 Preventive Maintenance and Number of Spares
642(7)
10.7 Group Maintenance
649(4)
10.8 Periodic Inspection
653(10)
10.9 Condition-Based Maintenance
663(2)
10.10 On-Line Surveillance and Monitoring
665(14)
Problems
669(7)
References
676(3)
Chapter 11 Warranty Models
679(54)
11.1 Introduction
679(2)
11.2 Warranty Models for Nonrepairable Products
681(20)
11.3 Warranty Models for Repairable Products
701(15)
11.4 Two-Dimensional Warranty
716(2)
11.5 Warranty Claims
718(15)
Problems
725(6)
References
731(2)
Chapter 12 Case Studies
733(72)
12.1 Case 1: A Crane Spreader Subsystem
733(6)
12.2 Case 2: Design of a Production Line
739(7)
12.3 Case 3: An Explosive Detection System
746(6)
12.4 Case 4: Reliability of Furnace Tubes
752(5)
12.5 Case 5: Reliability of Smart Cards
757(3)
12.6 Case 6: Life Distribution of Survivors of Qualification and Certification
760(7)
12.7 Case 7: Reliability Modeling of Telecommunication Networks for the Air Traffic Control System
767(9)
12.8 Case 8: System Design Using Reliability Objectives
776(10)
12.9 Case 9: Reliability Modeling of Hydraulic Fracture Pumps
786(5)
12.10 Case 10: Availability of Medical Information Technology System
791(6)
12.11 Case 11: Producer and Consumer Risk in System of Systems
797(8)
References
804(1)
APPENDICES
Appendix A Gamma Table
805(6)
Appendix B Computer Program To Calculate The Reliability Of A Consecutive-k-Out-of-n: F System
811(2)
Appendix C Optimum Arrangement Of Components In Consecuttve-2-Out-of-n: F Systems
813(8)
Appendix D Computer Program For Solving The Time-Dependent Equations
821(2)
Appendix E The Newton-Raphson Method
823(6)
Appendix F Coefficients Of bj's For i = 2, ..., n
829(14)
Appendix G Variance Of θ*2's in Terms Of θ22/n and K3/K*2
843(6)
Appendix H Computer Usting of the Newton--Raphson Method
849(2)
Appendix I Coefficients (ai and bi) of the Best Estimates of the Mean (μ) and Standard Deviation (σ) in Censored Samples Up To n = 20 from a Normal Population
851(14)
Appendix J Baker's Algorithm
865(4)
Appendix K Standard Normal Distribution
869(6)
Appendix L Critical Values of Χ2
875(4)
Appendk M Solutions of Selected Problems
879(8)
Author Index 887(8)
Subject Index 895
ELSAYED. A. ELSAYED, PHD is a Distinguished Professor in the Department of Industrial Engineering at Rutgers University. He is Director of the NSF/Industry/University Cooperative Research Center for Quality and Reliability Engineering, Rutgers-Arizona State University. His research interests include the areas of quality and reliability engineering, production planning, and control and manufacturing processes and engineering.