Muutke küpsiste eelistusi

E-raamat: Reliable Communications for Short-Range Wireless Systems

Edited by , Edited by , Edited by (Bilkent University, Ankara), Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139006026
  • Formaat - PDF+DRM
  • Hind: 102,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139006026

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Ensuring reliable communication is an important concern in short-range wireless communication systems with stringent quality of service requirements. The key characteristics of these systems, including data rate, communication range, channel profiles, network topologies, and power efficiency, are very different from those in long-range systems. This comprehensive book classifies short-range wireless technologies as high and low data-rate systems. It addresses major factors affecting reliability at different layers of the protocol stack, detailing the best ways to enhance the capacity and performance of short-range wireless systems. Particular emphasis is placed on reliable channel estimation, state-of-the-art interference mitigation techniques and cooperative communications for improved reliability. The book also provides detailed coverage of related international standards including UWB, ZigBee, and 60 GHz communications. With a balanced treatment of theoretical and practical aspects of short-range wireless communications and with a focus on reliability, this is an ideal resource for practitioners and researchers in wireless communications"--

Provided by publisher.

Muu info

Describes underlying principles and practical implementation schemes for short-range wireless systems, focusing on issues of reliability.
List of contributors
xi
1 Short-range wireless communications and reliability
1(28)
Ismail Guvenc
Sinan Gezici
Zafer Sahinoglu
Ulas C. Kozat
1.1 Short-range wireless communications
2(5)
1.1.1 Enabling factors
2(1)
1.1.2 Short-range versus medium/long-range communications
3(1)
1.1.3 High-rate versus low-rate communications
4(2)
1.1.4 Review of frequency regulations and available frequency bands
6(1)
1.2 Definition of reliability
7(6)
1.2.1 Reliability at the PHY layer
8(4)
1.2.2 Reliability at the MAC layer
12(1)
1.2.3 Reliability at the routing layer
12(1)
1.3 Review of related wireless standards
13(16)
1.3.1 Bluetooth
16(1)
1.3.2 IEEE 802.15.5 (mesh networking)
17(3)
1.3.3 IEEE 802.15 TG6 (body area networks (BANs))
20(2)
1.3.4 IEEE 802.15 TG7 (visible light communication)
22(1)
1.3.5 ISA SP100.11a (process control and monitoring)
23(6)
Part I High-rate systems
29(108)
2 High-rate UWB and 60 GHz communications
31(30)
Sinan Gezici
Ismail Guvenc
2.1 Overview and application scenarios
31(4)
2.2 ECMA-368 high-rate UWB standard
35(5)
2.2.1 Transmitter structure
36(1)
2.2.2 Signal model
37(2)
2.2.3 System parameters
39(1)
2.3 ECMA-387 millimeter-wave radio standard
40(13)
2.3.1 Transmitter structure
43(4)
2.3.2 Signal models
47(3)
2.3.3 System parameters
50(3)
2.4 IEEE 802.15.3c millimeter-wave radio standard
53(8)
2.4.1 Single-carrier PHY
55(1)
2.4.2 High-speed interface PHY
56(1)
2.4.3 Audio/visual PHY
57(4)
3 Channel estimation for high-rate systems
61(32)
Zhongjun Wang
Yan Xin
Xiaodong Wang
3.1 Channel models for high-rate systems
61(9)
3.1.1 Large-scale propagation effects
62(1)
3.1.2 Small-scale propagation effects
63(5)
3.1.3 Discrete-time model
68(2)
3.2 Review of channel estimation techniques
70(15)
3.2.1 Signal model for channel frequency response estimation
72(3)
3.2.2 LS channel frequency response estimator
75(1)
3.2.3 LMMSE channel frequency response estimator
76(2)
3.2.4 ML channel frequency response estimator
78(2)
3.2.5 Multistage channel frequency response estimator
80(4)
3.2.6 Complexity comparison
84(1)
3.3 Impact of channel estimation error on performance
85(8)
3.3.1 Average uncoded SER
86(2)
3.3.2 FER performance
88(5)
4 Adaptive modulation and coding for high-rate systems
93(20)
Ruonan Zhang
Lin Cai
4.1 Adaptive modulation and coding (AMC)
94(1)
4.2 AMC in MB-OFDM systems
95(2)
4.3 WPAN link architecture in ECMA-368
97(2)
4.3.1 Superframe structure and DRP
97(1)
4.3.2 Block-acknowledgment mechanism
98(1)
4.4 Packet-level model for UWB channels with shadowing
99(3)
4.4.1 Body shadowing effect on UWB channels
99(2)
4.4.2 Definition of channel states in the channel model
101(1)
4.4.3 Channel state transitions
101(1)
4.5 WPAN link performance analysis
102(4)
4.5.1 System model
102(1)
4.5.2 Markovian analysis
102(3)
4.5.3 Packet drop rate and throughput
105(1)
4.6 Simulation results
106(2)
4.7 AMC in 60 GHz millimeter-wave radio systems
108(2)
4.7.1 AMC mechanism in ECMA-387
108(1)
4.7.2 MAC protocol in ECMA-387
109(1)
4.8 Summary
110(3)
5 MIMO techniques for high-rate communications
113(24)
Wasim Q. Malik
Andre Pollok
5.1 Principles of MIMO systems
113(2)
5.2 MIMO for ultrawideband systems
115(8)
5.2.1 Channel model
115(1)
5.2.2 Spatial correlation
116(2)
5.2.3 Channel capacity
118(1)
5.2.4 The role of multipath
119(1)
5.2.5 Time-reversal prefiltering
120(3)
5.2.6 Summary
123(1)
5.3 MIMO for 60 GHz systems
123(9)
5.3.1 MIMO channel model
124(1)
5.3.2 Spatial correlation
124(2)
5.3.3 Beamforming
126(3)
5.3.4 Receiver performance
129(3)
5.3.5 Summary
132(1)
5.4 Conclusion
132(5)
Part II Low-rate systems
137(154)
6 ZigBee networks and low-rate UWB communications
139(29)
Zafer Sahinoglu
Ismail Guvenc
6.1 Overview and application examples
139(3)
6.2 ZigBee
142(7)
6.2.1 Channel allocations in ZigBee and IEEE 802.15.4
142(1)
6.2.2 Data transmission methods in ZigBee and IEEE 802.15.4
143(5)
6.2.3 Network channel managing for interference resolution
148(1)
6.3 Impulse-radio based UWB (IEEE 802.15.4a)
149(9)
6.3.1 Channel allocations
149(2)
6.3.2 Transmitter structure and signal model
151(3)
6.3.3 Frame structure and system parameters
154(2)
6.3.4 Ranging and location awareness
156(2)
6.4 Low latency MAC for WPANs (IEEE 802.15.4e)
158(5)
6.4.1 EGTS
158(3)
6.4.2 Low latency protocol (LLP)
161(1)
6.4.3 Time synchronized channel hopping (TSCH)
162(1)
6.5 IEEE 802.15.4f (active RFID)
163(1)
6.6 IEEE 802.15.4g (smart utility networks)
164(4)
7 Impact of channel estimation on reliability
168(22)
Hongsan Sheng
7.1 Introduction
168(2)
7.2 Signal and channel models with channel estimation errors
170(3)
7.2.1 Signal and channel model
170(1)
7.2.2 Estimation errors of channel parameters
171(2)
7.3 Reliability with channel estimation errors
173(7)
7.3.1 SNR analysis
174(2)
7.3.2 BER analysis
176(4)
7.4 System optimization with channel estimation errors
180(6)
7.4.1 Allocations of power to pilot symbols
180(1)
7.4.2 Signal bandwidth
181(3)
7.4.3 Design of rake receivers
184(2)
7.5 Concluding remarks
186(4)
8 Interference mitigation and awareness for improved reliability
190(44)
Huseyin Arslan
Serhan Yarkan
Mustafa E. Sahin
Sinan Gezici
8.1 Mitigation of multiple-access interference (MAI)
190(22)
8.1.1 Receiver design for MAI mitigation
190(18)
8.1.2 Coding design for MAI mitigation
208(4)
8.2 Mitigation of narrowband interference (NBI)
212(10)
8.2.1 UWB and narrowband system models
213(2)
8.2.2 NBI avoidance
215(4)
8.2.3 NBI cancelation
219(3)
8.3 Interference awareness
222(4)
8.4 Summary
226(8)
9 Characterization of Wi-Fi interference for dynamic channel allocation in WPANs
234(36)
Federico Penna
Claudio Pastrone
Hussein Khaleel
Maurizio A. Spirito
Roberto Garello
9.1 Towards adaptive wireless personal area networks (WPANs)
234(2)
9.1.1 Introduction and motivation
234(1)
9.1.2 Spectrum sensing for cognitive radio networks
235(1)
9.2 WPANs under Wi-Fi interference
236(8)
9.2.1 Detecting the interference: spectrum sensing in WPANs
236(1)
9.2.2 Test-bed configuration and scenarios
237(4)
9.2.3 Wi-Fi interference model
241(1)
9.2.4 Duration of the sensing window
241(3)
9.2.5 Sensing duty cycle
244(1)
9.3 Interference characterization and performance degradation: measurement results and analysis
244(17)
9.3.1 Anechoic chamber
245(5)
9.3.2 Indoor 1
250(5)
9.3.3 Indoor 2
255(5)
9.3.4 Analyzing the different spectrum evaluation metrics
260(1)
9.4 Improving WPAN's reliability under interference: dynamic channel selection
261(6)
9.4.1 Algorithm description
261(2)
9.4.2 Simulation results
263(4)
9.5 Conclusion
267(3)
10 Energy saving in low-rate systems
270(21)
Tae Rim Park
Myung J. Lee
10.1 Background on energy efficiency
270(6)
10.1.1 Measure of energy consumption
275(1)
10.2 Energy saving MACs
276(13)
10.2.1 Asymmetric single-hop MACs
277(5)
10.2.2 Symmetric multihop MACs
282(7)
10.3 Summary
289(2)
Part III Selected topics for improved reliability
291(116)
11 Cooperative communications for reliability
293(33)
Andreas F. Molisch
Stark C. Draper
Neelesh B. Mehta
11.1 Introduction
293(4)
11.1.1 Reliability via cooperative communication
293(2)
11.1.2 Overview of methods
295(2)
11.2 Cooperative communication using virtual beamforming
297(11)
11.2.1 Basic principles
297(1)
11.2.2 Basic "building block" network and protocol
298(3)
11.2.3 Basic network: analysis and results
301(3)
11.2.4 Routing
304(4)
11.3 Cooperative communication using rateless codes
308(18)
11.3.1 Basic principles
308(2)
11.3.2 Basic "building block" network and protocols
310(1)
11.3.3 Basic network: analysis and results
311(7)
11.3.4 Routing
318(8)
12 Reliability through relay selection in cooperative networks
326(21)
Ramy Abdallah Tannious
Aria Nosratinia
12.1 Introduction
326(1)
12.2 Signaling in multiple-relay networks
327(1)
12.3 Motivations for relay selection
328(2)
12.4 Overview of relay selection
330(7)
12.4.1 System model and mathematical background
331(2)
12.4.2 Relay selection strategies
333(4)
12.5 Limited feedback centralized relay selection
337(6)
12.5.1 Outage probability and effective rate
339(2)
12.5.2 DMT analysis
341(2)
12.6 Summary
343(4)
13 Fundamental performance limits in wideband relay architectures
347(39)
Ozgur Oyman
13.1 Introduction
347(5)
13.2 Power-bandwidth tradeoff in serial relay architectures
352(10)
13.2.1 Network model and definitions
352(5)
13.2.2 Power-bandwidth tradeoff characterization
357(5)
13.2.3 Section summary
362(1)
13.3 Power-bandwidth tradeoff in parallel relay architectures
362(24)
13.3.1 Network model and definitions
362(5)
13.3.2 Upper-limit on MRN power-bandwidth tradeoff
367(2)
13.3.3 MRN power-bandwidth tradeoff with practical LDMRB techniques
369(9)
13.3.4 Numerical results
378(4)
13.3.5 Section summary
382(4)
14 Reliable MAC layer and packet scheduling
386(21)
Ulas C. Kozat
14.1 Introduction
386(2)
14.2 Opportunistic scheduling/multiuser diversity
388(6)
14.2.1 Unicast case
389(2)
14.2.2 Multicast case
391(3)
14.3 Coding and scheduling
394(7)
14.3.1 Unicast case
394(3)
14.3.2 Multicast case
397(4)
14.4 Media quality driven scheduling
401(3)
14.5 Summary
404(3)
Index 407
Ismail Guvenc is a research engineer with DoCoMo USA Labs, where his research interests include UWB communications and position estimation, femtocell networks, relay networks, LTE systems and cognitive radio. He has published several standardization contributions for IEEE 802.15 and IEEE 802.16 standards, and holds 4 US patents, with another 15 pending US patent applications. Sinan Gezici is an Assistant Professor in the Department of Electrical and Electronics Engineering at Bilkent University, Turkey. His research interests are in the areas of signal detection, estimation and optimization theory, and their applications to wireless communications and localization systems. Among his publications in these areas is the recent book Ultra-Wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols. Zafer Sahinoglu is a Senior Principal Member of Technical Staff at Mitsubishi Electric Research Labs, where his current research interests include UWB localization, high efficiency wireless power transfer, low complexity space-time adaptive processing and game theoretic dynamic energy pricing. He has contributed significantly to MPEG-21, ZigBee, IEEE 802.15.4a and IEEE 802.15.4e standards and holds 2 European and 25 US patents, with 26 patents pending. Ulas C. Kozat is the Project Manager for the Network Architecture team at DoCoMo USA Labs. He has conducted research in the broad areas of wireless communications and communications networks, and has published mainly in cross-layer optimization, network modeling and performance analysis, and algorithm/protocol design.