Muutke küpsiste eelistusi

E-raamat: Remaining Asset Life: A State of the Art Review

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 97,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This report is an output of the fourth research track (Track 4) of WERF’s strategic asset management research program ‘Asset Management Communication and Implementation’ (SAM1R06). Track 4 addressed ‘remaining asset life’, and had the overall objective of contributing to the development of techniques, tools and methods for estimating residual life of wastewater assets. Track 4 research was planned to be undertaken in a staged manner, so as to provide a stepwise development of concepts and protocols.

To this end, the research team has produced a synthesis of knowledge in relation to “end of life” and “remaining asset life”, which is the subject of this report. Drawing on the literature and the knowledge-base of the research team and industry partners, information is presented on the range of factors that influence the life of the different asset classes involved in the provision of wastewater services. A taxonomy of asset life is also given, along with a critical review of the conceptual linkages between risk, asset management and remaining asset life. A review of techniques used to assess remaining asset life is also included, as well as a detailed ‘state of the art’ review of modeling tools and approaches.

One of the key questions to be addressed in this initial stage of the research was the state of knowledge with respect to the estimation and prediction of remaining asset life, and if there is the capacity to translate between condition and performance data (e.g. the presence of significant defects) and the residual life of an asset. In this regard, this report builds on previous work undertaken by the research team into protocols for condition and performance assessments, as detailed in WERF (2007).
Acknowledgments iii
Abstract and Benefits v
List of Tables
x
List of Figures
xi
List of Acronyms
xiii
Executive Summary 1(1)
1.0 Introduction
1(1)
1.1 Background
1(1)
1.2 WERF's Strategic Asset Management Challenge
1(1)
1.3 Scope of this Report
2(1)
1.4 Project Delivery
3(1)
1.5 Scope of Assets Covered
3(2)
1.5.1 Definition of Asset Adopted
4(1)
1.5.2 Representation of the Asset Stock
4(1)
1.6 Linkage to Simple
5(1)
1.7 Report Structure
6
2.0 The Concept of Remaining Asset Life
2(1)
2.1 Summary
1(1)
2.2 Introduction
1(1)
2.3 What is `Remaining Asset Life'?
1(2)
2.4 The Issue of Repairability
3(1)
2.4.1 Non-Repairable Components
3(1)
2.4.2 Repairable Assets
3(1)
2.4.3 Overlap Between the Defintions
3(1)
2.5 A Taxonomy of Remaining Asset Life
4(2)
2.5.1 A Holistic Definition of Remaining Asset Life
5(1)
2.6 Research Challenges: Asset Life Concepts
6
3.0 Factors that Influence Asset Life
3(1)
3.1 Summary
1(1)
3.2 Introduction
1(1)
3.3 Generic Categories of Factors that Influence Asset Life
1(1)
3.4 Service Lives of Wastewater Assets
2(1)
3.5 Sewerage Assets
3(5)
3.5.1 Factors that Influence the Physical Life of Sewers
5(2)
3.5.2 Factors that Influence the Economic/Service Life of Sewers
7(1)
3.6 Civil and Building Assets
8(3)
3.6.1 Factors that Influence the Physical Life of C&B Assets
8(2)
3.6.2 Factors that Influence the Economic/Service Life of C&B Assets
10(1)
3.7 Mechanical and Electrical Assets
11(3)
3.7.1 Factors that Influence the Physical Life of M&E Assets
12(2)
3.7.2 Factors that Influence the Economic/Service Life of M&E Assets
14(1)
3.8 ICA Assets
14(3)
3.8.1 Factors that Influence the Physical Life of ICA Assets
15(1)
3.8.2 Factors that Influence the Economic/Service Life of ICA Assets
16(1)
3.9 Research Challenges: Asset Life Concepts
17
4.0 The Influence of Risk on Remaining Asset Life
4(1)
4.1 Summary
1(1)
4.2 Introduction
1(1)
4.3 An Overview of Risk in Asset Management
2(4)
4.3.1 Risk Cost
2(1)
4.3.2 The Importance of Risk to Asset Management
3(1)
4.3.3 A Life Cycle Focus
4(2)
4.3.4 Realized and Unrealized Risk
6(1)
4.4 Likelihood of Failure
6(6)
4.4.1 Changes in Asset Load and Capacity
7(1)
4.4.2 Event Driven Failures
8(2)
4.4.3 The Influence of Repair on Failure Probability
10(2)
4.4.4 Influence of Failure Modes
12(1)
4.4.5 Acceptance Criteria for Failure Likelihood
12(1)
4.5 Consequence of Failure
12(4)
4.5.1 Cost Consequences
13(1)
4.5.2 Probability-Side of Consequence
14(1)
4.5.3 Consequence as a Measure of Asset Importance
14(2)
4.5.4 Level of Redundancy
16(1)
4.5.5 The Impact of Failure Modes
16(1)
4.6 The Impact of Risk on Asset Replacement Decisions
16(1)
4.7 A Case Study of Risk in Practice: the City of Henderson
17(2)
4.7.1 The Department of Utility Services of the City of Henderson
17(1)
4.7.2 Assessment of Portfolio Risk
18(1)
4.8 Initial Data Assessment
19(1)
4.9 Risk Scoring Methodologies
19(1)
4.10 Next Steps
20(1)
4.11 Research Challenges: Risk
21
5.0 The Role of Remaining Asset Life in Asset Management
5(1)
5.1 Summary
1(1)
5.2 Introduction
1(1)
5.3 The Role of Remaining Life in Asset Management
1(3)
5.3.1 Strategic Asset Management
1(3)
5.3.2 Tactical Asset Management
4(1)
5.3.3 Operations and Maintenance
4(1)
5.4 Case Studies
4(1)
5.5 A UK Perspective; Sewer Management with United Utilities
5(5)
5.5.1 Regulatory Environment
5(1)
5.5.2 Asset Management Frameworks Applied
6(1)
5.5.3 SAM, TAM and O&M within UU
7(2)
5.5.4 Use of Remaining Asset Life in Asset Management
9(1)
5.6 An Australian Perspective; Sewer Management within Sydney Water
10(4)
5.6.1 Regulatory Environment
10(1)
5.6.2 Asset Management Frameworks Applied
10(1)
5.6.3 SAM, TAM and O&M within Sydney Water
11(1)
5.6.4 Use of Remaining Asset Life in Asset Management
12(2)
5.7 Synthesis of Perspectives
14(1)
5.8 Research Challenges: Asset Management
15
6.0 Assessing Remaining Asset Life
6(1)
6.1 Summary
1(1)
6.2 Introduction
1(1)
6.3 Assumed Asset Lives
2(1)
6.4 The Role of Condition Assessment
2(9)
6.4.1 Interpretation of Condition and Performance Data
3(6)
6.4.2 A Case Study Example
9(2)
6.5 Research Challenges: Assessing Remaining Life
11
7.0 The State of the Art in Modeling Remaining Asset Life
7(1)
7.1 Summary
1(1)
7.2 Introduction
2(1)
7.3 A Taxonomy of Modeling Techniques
2(1)
7.4 Deterministic Models - Empirical Approaches
3(1)
7.4.1 Summary of Approach
3(1)
7.4.2 Theoretical Background
4(1)
7.4.3 Practical Considerations
4(1)
7.4.4 Examples of Application
4(1)
7.5 Deterministic Models - Physical Approaches
4(2)
7.5.1 Summary of Approach
5(1)
7.5.2 Theoretical Background
5(1)
7.5.3 Practical Considerations
6(1)
7.5.4 Examples of Application
6(1)
7.6 Statistical Models - Failure Event Data Approaches
6(5)
7.6.1 Summary
7(1)
7.6.2 Theoretical Background
7(3)
7.6.3 Practical Considerations
10(1)
7.6.4 Examples of Applications
10(1)
7.7 Statistical Models - Service Lifetime Approaches
11(2)
7.7.1 Summary
11(1)
7.7.2 Theoretical Background
11(1)
7.7.3 Practical Considerations
12(1)
7.7.4 Examples of Application
12(1)
7.8 Statistical Models - Cohort Survival Approaches
13(3)
7.8.1 Summary
13(1)
7.8.2 Theoretical Background
13(1)
7.8.3 Practical Considerations
14(1)
7.8.4 Examples of Application
14(2)
7.9 Statistical Methods - Ordinal Regression
16(5)
7.9.1 Summary of Approach
16(1)
7.9.2 Theoretical Background
16(1)
7.9.3 Practical Considerations
17(1)
7.9.4 Examples of Applications
17(4)
7.10 Statistical Models - Markov Chain Approaches
21(8)
7.10.1 Summary of Approach
21(1)
7.10.2 Theoretical Background
21(3)
7.10.3 Practical Considerations
24(2)
7.10.4 Examples of Application
26(3)
7.11 Statistical models - Bayesian Approaches
29(3)
7.11.1 Theoretical Background
29(2)
7.11.2 Practical Considerations
31(1)
7.11.3 Examples of Application
31(1)
7.12 Physical Probabilistic Models - Monte Carlo Simulation
32(3)
7.12.1 Summary
32(1)
7.12.2 Theoretical Background
32(3)
7.12.3 Practical Considerations
35(1)
7.12.4 Examples of Application
35(1)
7.13 Physical Probabilistic Models - Structural Reliability-Based Methods
35(3)
7.13.1 Summary
36(1)
7.13.2 Theoretical Background
36(1)
7.13.3 Practical Considerations
37(1)
7.13.4 Examples of Application
37(1)
7.14 Soft Computing Methods - Artificial Neural Networks (ANNs)
38(3)
7.14.1 Summary
38(1)
7.14.2 Theoretical Background
38(2)
7.14.3 Practical Considerations
40(1)
7.14.4 Examples of Application
41(1)
7.15 Soft Computing Methods - Fuzzy Logic
41(13)
7.15.1 Summary
42(1)
7.15.2 Theoretical Background
42(9)
7.15.3 Practical Considerations
51(1)
7.15.4 Examples of Application
52(2)
7.16 Technique Application as a Function of Asset Management Capacity
54(1)
7.17 Research Challenges: Modeling Remaining Asset Life
55
8.0 Recommendations
8
Appendix A A Taxonomy of Remaining Asset Life 1(1)
Glossary 1(1)
References 1