Muutke küpsiste eelistusi

E-raamat: Remote Sensing Physics: An Introduction to Observing Earth from Space

(Johns Hopkins University), (Johns Hopkins University)
  • Formaat: PDF+DRM
  • Sari: AGU Advanced Textbooks
  • Ilmumisaeg: 10-Feb-2022
  • Kirjastus: American Geophysical Union
  • Keel: eng
  • ISBN-13: 9781119669029
  • Formaat - PDF+DRM
  • Hind: 125,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: AGU Advanced Textbooks
  • Ilmumisaeg: 10-Feb-2022
  • Kirjastus: American Geophysical Union
  • Keel: eng
  • ISBN-13: 9781119669029

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The Physics of Earth Remote Sensing is a textbook that examines the physical principles underlying remote observations of the Earth by optical, infrared, and microwave sensors. This textbook focuses on both the techniques used to make remote measurements, as well as the algorithms used to extract geophysical information from remote sensing observations. Both passive and active sensors are considered. While the text primarily concentrates on satellite-based remote sensing of the environment, remote sensors deployed from aircraft and other platforms are also described"--

An introduction to the physical principles underlying Earth remote sensing.

The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors.

Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements.

Volume highlights include:

  • Basis for Earth remote sensing including ocean, land, and atmosphere
  • Description of satellite orbits relevant for Earth observations
  • Physics of passive sensing, including infrared, optical and microwave imagers
  • Physics of active sensing, including radars and lidars
  • Overview of current and future Earth observation missions
  • Compendium of resources including an extensive bibliography
  • Sample problem sets and answers available to instructors

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Preface xiii
Acronyms xv
About the Companion Website xxiii
1 Introduction to Remote Sensing
1(10)
1.1 How Remote Sensing Works
4(5)
References
9(2)
2 Satellite Orbits
11(22)
2.1 Computation of Elliptical Orbits
15(1)
2.2 Low Earth Orbits
16(7)
2.3 Geosynchronous Orbits
23(5)
2.4 Molniya Orbit
28(1)
2.5 Satellite Orbit Prediction
29(1)
2.6 Satellite Orbital Trade-offs
29(2)
References
31(2)
3 Infrared Sensing
33(66)
3.1 Introduction
33(1)
3.2 Radiometry
34(3)
3.3 Radiometric Sensor Response
37(4)
3.3.1 Derivation
37(3)
3.3.2 Example Sensor Response Calculations
40(1)
3.3.3 Response of a Sensor with a Partially-Filled FOV
40(1)
3.4 Blackbody Radiation
41(4)
3.4.1 Planck's Radiation Law
41(1)
3.4.2 Microwave Blackbody
42(1)
3.4.3 Low-Frequency and High-Frequency Limits
43(1)
3.4.4 Stefan-Boltzmann Law
43(1)
3.4.5 Wein's Displacement Law
44(1)
3.4.6 Emissivity
44(1)
3.4.7 Equivalent Blackbody Temperature
44(1)
3.5 IR Sea Surface Temperature
45(4)
3.5.1 Contributors to Infrared Measurements
45(1)
3.5.2 Correction of Low-Altitude Infrared Measurements
46(2)
3.5.3 Correction of High-Altitude Infrared Measurements
48(1)
3.6 Atmospheric Radiative Transfer
49(5)
3.7 Propagation in Seawater
54(4)
3.8 Smooth Surface Reflectance
58(2)
3.9 Rough Surface Reflectance
60(3)
3.10 Ocean Thermal Boundary Layer
63(3)
3.11 Operational SST Measurements
66(11)
3.11.1 AVHRR Instrument
66(2)
3.11.2 AVHRR Processing
68(2)
3.11.3 AVHRR SST Algorithms
70(1)
3.11.4 Example AVHRR Images
71(2)
3.11.5 VIIRS Instrument
73(2)
3.11.6 SST Accuracy
75(2)
3.11.7 Applications
77(1)
3.12 Land Temperature - Theory
77(3)
3.13 Operational Land Temperature
80(6)
3.14 Terrestrial Evapotranspiration
86(1)
3.15 Geologic Remote Sensing
87(4)
3.15.1 Linear Mixture Theory and Spectral Unmixing
90(1)
3.16 Atmospheric Sounding
91(4)
References
95(4)
4 Optical Sensing - Ocean Color
99(44)
4.1 Introduction to Ocean Color
99(4)
4.2 Fresnel Reflection
103(3)
4.3 Skylight
106(1)
4.4 Water-Leaving Radiance
107(3)
4.5 Water Column Reflectance
110(5)
4.5.1 Pure Seawater
112(1)
4.5.2 Case 1 Waters
113(1)
4.5.3 Case 2 Waters
114(1)
4.6 Remote Sensing Reflectance
115(2)
4.7 Ocean Color Data - Case 1 Water
117(2)
4.7.1 Other Uses of Ocean Color
118(1)
4.8 Atmospheric Corrections
119(5)
4.9 Ocean Color Satellite Sensors
124(11)
4.9.1 General History
124(2)
4.9.2 SeaWiFS
126(4)
4.9.3 MODIS
130(3)
4.9.4 VIIRS
133(2)
4.10 Ocean Chlorophyll Fluorescence
135(5)
References
140(3)
5 Optical Sensing - Land Surfaces
143(36)
5.1 Introduction
143(1)
5.2 Radiation over a Lambertian Surface
143(4)
5.3 Atmospheric Corrections
147(1)
5.4 Scattering from Vegetation
147(6)
5.5 Normalized Difference Vegetation Index
153(5)
5.6 Vegetation Condition and Temperature Condition Indices
158(1)
5.7 Vegetation Indices from Hyperspectral Data
159(2)
5.8 Landsat Satellites
161(3)
5.9 High-resolution EO sensors
164(12)
5.9.1 Introduction
164(1)
5.9.2 First-Generation Systems
164(4)
5.9.3 Second-Generation Systems
168(4)
5.9.4 Third-Generation Systems
172(2)
5.9.5 Commercial Smallsat Systems
174(2)
References
176(3)
6 Microwave Radiometry
179(50)
6.1 Introduction to Microwave Radiometry
179(1)
6.2 Microwave Radiometers
180(1)
6.3 Microwave Radiometry
181(4)
6.3.1 Antenna Pattern
182(2)
6.3.2 Antenna Temperature
184(1)
6.3.3 Examples
185(1)
6.4 Polarization
185(3)
6.4.1 Basic Polarization
185(2)
6.4.2 Jones Vector
187(1)
6.4.3 Stokes Parameters
187(1)
6.5 Passive Microwave Sensing of the Ocean
188(10)
6.5.1 Atmospheric Transmission
189(1)
6.5.2 Seawater Emissivity
189(1)
6.5.3 Fresnel Reflection Coefficients, Emissivity, and Skin Depth
190(1)
6.5.4 Sky Radiometric Temperature
191(2)
6.5.5 Sea Surface Brightness Temperature
193(4)
6.5.6 Wind Direction from Polarization
197(1)
6.6 Satellite Microwave Radiometers
198(9)
6.6.1 SMMR
198(1)
6.6.2 SSM/I and SSMI/S
198(2)
6.6.3 SSM/I Wind Algorithm
200(3)
6.6.4 AMSR-E
203(1)
6.6.5 WindSat
204(3)
6.7 Microwave Radiometry of Sea Ice
207(6)
6.8 Sea Ice Measurements
213(5)
6.9 Microwave Radiometry of Land Surfaces
218(4)
6.10 Atmospheric Sounding
222(4)
References
226(3)
7 Radar
229(22)
7.1 Radar Range Equation
229(3)
7.2 Radar Cross-Section
232(4)
7.3 Radar Resolution
236(3)
7.4 Pulse Compression
239(5)
7.5 Types of Radar
244(1)
7.6 Example Terrestrial Radars
245(4)
7.6.1 Weather Radars
245(3)
7.6.2 HF Surface Wave Radar
248(1)
References
249(2)
8 Altimeters
251(30)
8.1 Introduction to Altimeters
251(3)
8.2 Specular Scattering
254(3)
8.3 Altimeter Wind Speed
257(3)
8.4 Altimeter Significant Wave Height
260(3)
8.5 Altimeter Sea Surface Height
263(5)
8.5.1 Introduction
263(1)
8.5.2 Pulse-limited vs Beam-limited Altimeter
263(1)
8.5.3 Altimeter Pulse Timing Precision
264(1)
8.5.4 Altimeter Range Corrections
264(4)
8.6 Sea Surface Topography
268(6)
8.7 Measuring Gravity and Bathymetry
274(1)
8.8 Delay-Doppler Altimeter
275(3)
References
278(3)
9 Scatterometers
281(28)
9.1 Ocean Waves
281(6)
9.2 Bragg Scattering
287(4)
9.3 RCS Dependence on Wind
291(2)
9.4 Scatterometer Algorithms
293(4)
9.5 Fan-Beam Scatterometers
297(3)
9.6 Conical-Scan Pencil-Beam Scatterometers
300(4)
9.7 Conical-Scan Fan-Beam Scatterometers
304(3)
References
307(2)
10 Synthetic Aperture Radar
309(84)
10.1 Introduction to SAR
309(4)
10.2 SAR Azimuth Resolution
313(7)
10.2.1 Doppler Time History
313(3)
10.2.2 Azimuth Extent, Integration Time, and Doppler Bandwidth
316(1)
10.2.3 Azimuth Resolution
316(2)
10.2.4 SAR Timing, Resolution, and Swath Limits
318(1)
10.2.5 The Magic of SAR Exposed
319(1)
10.3 SAR Image Formation and Image Quality
320(2)
10.4 SAR Imaging of Moving Scatterers
322(3)
10.5 Multimode SARs
325(1)
10.6 Polarimetric SAR
326(4)
10.6.1 Polarimetric Response of Canonical Targets
327(1)
10.6.2 Decompositions
328(1)
10.6.3 Compact Polarimetry
329(1)
10.7 SAR Systems
330(9)
10.7.1 Radarsat-1
332(2)
10.7.2 Envisat
334(1)
10.7.3 PALSAR
335(1)
10.7.4 Radarsat-2
335(1)
10.7.5 TerraSAR-X
335(1)
10.7.6 COSMO-SkyMed
335(1)
10.7.7 Sentinel-1
336(1)
10.7.8 Radarsat Constellation Mission (RCM)
337(1)
10.7.9 Military SARs
337(2)
10.8 Advanced SARs
339(7)
10.8.1 Cross-Track Interferometry
339(2)
10.8.2 Along-Track Interferometry
341(3)
10.8.3 Differential Interferometry
344(1)
10.8.4 Tomographic Interferometry
344(1)
10.8.5 High-Resolution, Wide-Swath SAR
344(2)
10.9 SAR Applications
346(42)
10.9.1 SAR Ocean Surface Waves
347(6)
10.9.2 SAR Winds
353(7)
10.9.3 SAR Bathymetry
360(4)
10.9.4 SAR Ocean Internal Waves
364(6)
10.9.5 SAR Sea Ice
370(4)
10.9.6 SAR Oil Slicks and Ship Detection
374(6)
10.9.7 SAR Land Mapping Applications and Distortions
380(6)
10.9.8 SAR Agricultural Applications
386(2)
References
388(5)
11 Lidar
393(20)
11.1 Introduction
393(1)
11.2 Types of Lidar
393(2)
11.2.1 Direct vs Coherent Detection
394(1)
11.3 Processes Driving Lidar Returns
395(2)
11.3.1 Elastic Scattering
395(1)
11.3.2 Inelastic Scattering
396(1)
11.3.3 Fluorescence
397(1)
11.4 Lidar Range Equation
397(3)
11.4.1 Point Scattering Target
397(1)
11.4.2 Lambertian Surface
398(1)
11.4.3 Elastic Volume Scattering
398(1)
11.4.4 Bathymetric Lidar
398(2)
11.5 Lidar Receiver Types
400(2)
11.5.1 Linear (full waveform) Lidar
400(1)
11.5.2 Single Photon Lidar
401(1)
11.6 Lidar Altimetry
402(3)
11.6.1 NASA Airborne Topographic Mapper
402(1)
11.6.2 Space-Based Lidar Altimeters (IceSat-1 & 2)
403(2)
11.6.3 Bathymetric Lidar
405(1)
11.7 Lidar Atmospheric Sensing
405(6)
11.7.1 ADM-Aeolus
405(3)
11.7.2 NASACALIOP
408(3)
References
411(2)
12 Other Remote Sensing and Future Missions
413(46)
12.1 Other Types of Remote Sensing
413(1)
12.1.1 GRACE
413(1)
12.1.2 Limb Sounding
414(1)
12.2 Future Missions
414(5)
12.2.1 NASA Missions
415(1)
12.2.2 ESA Missions
416(2)
12.2.3 Summary
418(1)
References
419(2)
Appendix A Constants
421(2)
Appendix B Definitions of Common Angles
423(4)
Appendix C Example Radiometric Calculations
427(6)
Appendix D Optical Sensors
433(14)
D.1 Example Optical Sensors
435(1)
D.1.1 Photodiodes
435(2)
D.1.2 Charge-Coupled Devices
437(2)
D.1.3 CMOS Image Sensors
439(1)
D.1.4 Bolometers and Microbolometers
440(2)
D.2 Optical Sensor Design Examples
442(1)
D.2.1 Computing Exposure Times
442(2)
D.2.2 Impact of Digitization and Shot Noise on Contrast Detection
444(1)
References
445(2)
Appendix E Radar Design Example
447(8)
Appendix F Remote Sensing Resources on the Internet
455(2)
F.1 Information and Tutorials
455(1)
F.2 Data
455(1)
F.3 Data Processing Tools
456(1)
F.4 Satellite and Sensor Databases
456(1)
F.5 Other
456(1)
Appendix G Useful Trigonometric Identities
457(2)
Index 459
Rick Chapman, The Johns Hopkins University Applied Physics Laboratory, USA

Richard Gasparovic, The Johns Hopkins University Applied Physics Laboratory (Ret.), USA