Muutke küpsiste eelistusi

E-raamat: Replication and Evidence Factors in Observational Studies

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Outside of randomized experiments, association does not imply causation, and yet there is nothing defective about our knowledge that smoking causes lung cancer, a conclusion reached in the absence of randomized experimentation with humans. How is that possible? If observed associations do not identify causal effects in observational studies, how can a sequence of such associations become decisive?

Two or more associations may each be susceptible to unmeasured biases, yet not susceptible to the same biases. An observational study has two evidence factors if it provides two comparisons susceptible to different biases that may be combined as if from independent studies of different data by different investigators, despite using the same data twice. If the two factors concur, then they may exhibit greater insensitivity to unmeasured biases than either factor exhibits on its own.

Replication and Evidence Factors in Observational Studies includes four parts:











A concise introduction to causal inference, making the book self-contained





Practical examples of evidence factors from the health and social sciences with analyses in R





The theory of evidence factors





Study design with evidence factors

A companion R package evident is available from CRAN.

Arvustused

"In summary, this book provides clear descriptions to explain analysis of evidence factors in observational studies. In addition, the author also provides the rigorous theory to support the validity of methodologies in this book. For the implementation of methodologies, the author develops a package evidence, which makes readers reproduce and implement the methods easily. In general, this book is an amazing reference for those who are interested in causal inference or observational studies."

- Li Pang Chen, J R Stat Soc Series A. https://doi.org/10.1111/rssa.12837

"In short, I certainly consider this to be a valuable addition to my research bookshelf and would be happy to refer it to anyone interested in understanding the driving principles and subtleties of observational studies."

-Rajarshi Mukherjee, Biometrics, Vol 77, No.4, 2021

"This book is the first to discuss evidence factors and is a valuable contribution. Statisticians working on observational studies would find the book useful. Empirical researchers who conduct observational studies would find Chapters 1-6 useful. I would say the book serves more as a reference than a textbook although the book is as lucidly written as any good textbookI would strongly recommend publication. The book will be of wide interest to causal inference practitioners." (Ted Westling, University of Massachusetts, Amherst)

"This book will be of wide interest to causal inference practitioners." (Joel Greenhouse, Carnegie Mellon University)

"This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication.

(i) A big strength is that the book is conscious of the balance it needs to keep among motivating the concept, providing technical exposure and demonstrating the application of the method.

(ii) This book is self-contained.

(iii) The R codes in the footnotes and more references to specific R packages to implement the methods is a huge plus for the book.

(iv) Of course, more on this topic exists that is not covered in the book. This book gives necessary references to papers for curious readers.

There is a clear distinction of the focus of chapters through 6 and the latter chapters While the earlier chapters consider Evidence Factors in Practice, the later chapters are about the Theory of Evidence Factors. This distinction is important to illustrate ideas. It is also nice that the book rounds up the discussion at the end in Chapter 13 with many practical toolsThis book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication." (Bikram Karmakar, University of Florida)

"Paul Rosenbaum is a gifted expositor of complex statistical concepts and methods. His books on analyzing data from observational studies are not only a pleasure to read and to learn from but are scholarly and erudite in ways that are not typical of writings in statisticsThe proposed manuscript is in the same style as Rosenbaums earlier books and therefore promises to be popular as a reference for research workers or as a textbook for advanced undergraduate or graduate students, i.e., readers with sufficient statistical maturity. There is a lot of conceptual and technical machinery required to understand and use statistical methods for causal inference. In this book Rosenbaum is taking a step back. His goal is to explicate the informal steps that lead to a consensus about a causal relationship in practice and to provide formal methods for interrogating and weighing evidence from studies to help the scientific community reach consensus about causal relationships. This book will be a valuable addition to the causal inference literature." (Dylan Small, University of Pennsylvania) "In summary, this book provides clear descriptions to explain analysis of evidence factors in observational studies. In addition, the author also provides the rigorous theory to support the validity of methodologies in this book. For the implementation of methodologies, the author develops a package evident, which makes readers reproduce and implement the methods easily. In general, this book is an amazing reference for those who are interested in causal inference or observational studies." -Li-Pang Chen in Journal of the Royal Statistical Society Series A, March 2022

"(...) the book sets high standards for the analysis of those observational studies that fit within its purview. A wide range of examples and associated data are discussed, all with important public health implications. ... As the author suggests, practically minded readers who skip the detailed mathematics can nevertheless gain important insights by following the motivation, applications and examples. The issues raised and points made are important whenever associations found in observational data are used as a basis for claims of causation..." -John H. Maindonald in International Statistical Review, March 2022

"Overall, I consider the book to be a rich resource for introducing this relatively new yet highly impactful area of research. The book is organized into four Sections. Section II sets the tone for the rest of the book by collecting carefully chosen examples. Chapter 4 provides five real studies to elicit aspects of evidence factors from a variety of representative examples. The chapter is supplemented through R codes for the examples covered and hands-on exercises for the interested reader. Concepts are well elucidated through concrete running examples. Section III of the book lends a mathematically rigorous lens to the intuitions gathered from the data analyses and numerical examples in Section II. This logic is beautifully explained. -Rajarshi Mukherjee in Biometrics, June 2021

"This book is the first to discuss evidence factors and is a valuable contribution. Statisticians working on observational studies would find the book useful. Empirical researchers who conduct observational studies would find Chapters 1-6 useful. I would say the book serves more as a reference than a textbook although the book is as lucidly written as any good textbookI would strongly recommend publication. The book will be of wide interest to causal inference practitioners." -Ted Westling, University of Massachusetts, Amherst

"This book will be of wide interest to causal inference practitioners." -Joel Greenhouse, Carnegie Mellon University

"This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication. (i) A big strength is that the book is conscious of the balance it needs to keep among motivating the concept, providing technical exposure and demonstrating the application of the method. (ii) This book is self-contained. (iii) The R codes in the footnotes and more references to specific R packages to implement the methods is a huge plus for the book. (iv) Of course, more on this topic exists that is not covered in the book. This book gives necessary references to papers for curious readers. There is a clear distinction of the focus of chapters through 6 and the latter chapters While the earlier chapters consider Evidence Factors in Practice, the later chapters are about the Theory of Evidence Factors. This distinction is important to illustrate ideas. It is also nice that the book rounds up the discussion at the end in Chapter 13 with many practical toolsThis book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication." -Bikram Karmakar, University of Florida

"Paul Rosenbaum is a gifted expositor of complex statistical concepts and methods. His books on analyzing data from observational studies are not only a pleasure to read and to learn from but are scholarly and erudite in ways that are not typical of writings in statisticsThe proposed manuscript is in the same style as Rosenbaums earlier books and therefore promises to be popular as a reference for research workers or as a textbook for advanced undergraduate or graduate students, i.e., readers with sufficient statistical maturity. There is a lot of conceptual and technical machinery required to understand and use statistical methods for causal inference. In this book Rosenbaum is taking a step back. His goal is to explicate the informal steps that lead to a consensus about a causal relationship in practice and to provide formal methods for interrogating and weighing evidence from studies to help the scientific community reach consensus about causal relationships. This book will be a valuable addition to the causal inference literature." -Dylan Small, University of Pennsylvania

I Background: Aspects of Causal Inference.
1. Causal Inference in Randomized Experiments.
2. Causal Inference in Observational Studies.
3. Replication and its Limits. II Evidence Factors in Practice.
4. Examples of Studies with Evidence Factors.
5. Simple Analyses with Evidence Factors.
6. Planned Analyses with Evidence Factors.
7. Dependent P-Values.
8. Treatment Assignments as Permutations.
9. Sets of Treatment Assignments.
10. Probability Distributions for Treatment Assignments.
11. Factors. 12.*Groups of Permutation Matrices. IV Aspects of Design.
13. Constructing Matched Samples with Evidence Factors.
14. Design Elements for Evidence Factors.

Author

Paul R. Rosenbaum is the Robert G. Putzel Professor of Statistics at the Wharton School of the University of Pennsylvania. For contributions to causal inference, he received the R. A. Fisher Award in 2019 and the George W. Snedecor Award in 2003, both from the Committee of Presidents of Statistical Societies (COPSS). He delivered an IMS Medallion Lecture on the topic of this book in 2020. Dr. Rosenbaum is the author of several other books including Observational Studies (Springer 1995, 2002), Design of Observational Studies (Springer 2010, 2020), and Observation and Experiment: An Introduction to Causal Inference (Harvard University Press 2017).