Muutke küpsiste eelistusi

E-raamat: Representation Theory of Finite Group Extensions: Clifford Theory, Mackey Obstruction, and the Orbit Method

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 N G H 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran.The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillovs Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group.





TheLittle Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.
- 1. Preliminaries. - 2. Clifford Theory. - 3. Abelian Extensions. -
4. The Little Group Method for Abelian Extensions. - 5. Examples and
Applications. - 6. Central Extensions and the Orbit Method. -
7. Representations of Finite Group Extensions via Projective Representations.
- 8. Induced Projective Representations. -
9. Clifford Theory for Projective
Representations. - 10 Projective Representations of Finite Abelian Groups
with Applications.
Tullio Ceccherini-Silberstein obtained his BS in Mathematics (1990) from the University of Rome La Sapienza and his PhD in Mathematics (1994) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Sannio (Benevento). He is an Editor of the EMS journal Groups, Geometry, and Dynamics and of the Bulletin of the Iranian Mathematical Society. He has authored more than 90 research articles in Functional and Harmonic Analysis, Group Theory, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 9 monographs on Harmonic Analysis and Representation Theory and on Group Theory and Dynamical Systems. Fabio Scarabotti obtained his BS in Mathematics (1989) and his PhD in Mathematics (1994) from the University of Rome La Sapienza.  Currently, he is professor of Mathematical Analysis at the University of Rome La Sapienza. He has authored more than 40 research articles in Harmonic Analysis, Group Theory, Combinatorics, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 6 monographs on Harmonic Analysis and Representation Theory.





Filippo Tolli obtained his BS in Mathematics (1991) from the University of Rome La Sapienza and his PhD in Mathematics (1996) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Roma Tre. He has authored more than 30 research articles in Harmonic Analysis, Group Theory, Combinatorics, Lie Groups and Partial Differential Equations and has co-authored 6 monographs on Harmonic Analysis and Representation Theory.