Muutke küpsiste eelistusi

E-raamat: Research in Computational Molecular Biology: 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 21th Annual Conference on Research in Computational Molecular Biology, RECOMB 2017, held in Hong Kong, China, in May 2017.
The 22 regular papers presented in this volume were carefully reviewed and selected from 184 submissions. 16 short abstracts are included in the back matter of the volume. They report on original research in all areas of computational molecular biology and bioinformatics
Boosting alignment accuracy by adaptive local realignment.- A concurrent
subtractive assembly approach for identification of disease associated
sub-meta-genomes.- A flow procedure for the linearization of genome variation
graphs.- Dynamic alignment-free and reference-free read compression.- A fast
approximate algorithm for mapping long reads to large reference databases.-
Determining the consistency of resolved triplets and fan triplets.-
Progressive calibration and averaging for tandem mass spectrometry
statistical confidence estimation: Why settle for a single decoy.- Resolving
multi-copy duplications de novo using polyploid phasing.- A Bayesian active
learning experimental design for inferring signaling networks.- BBK* (Branch
and Bound over K*): A provable and efficient ensemble-based algorithm to
optimize stability and binding affinity over large sequence spaces.-
Super-bubbles, ultra-bubbles and cacti.- EPR-dictionaries: A practical and
fast data structure for constant time searches in unidirectional and
bidirectional FM indices.- A Bayesian framework for estimating cell type
composition from DNA methylation without the need for methylation reference.-
Towards recovering Allele-specific cancer genome graphs.- Using stochastic
approximation techniques to efficiently construct confidence intervals for
heritability.- Improved search of large transcriptomic sequencing databases
using split sequence bloom trees.- All some sequence bloom trees.-
Longitudinal genotype-phenotype association study via temporal structure
auto-learning predictive model.- Improving imputation accuracy by inferring
causal variants in genetic studies.- The copy-number tree mixture
deconvolution problem and applications to multi-sample bulk sequencing tumor
data.- Quantifying the impact of non-coding variants on transcription
factor-DNA binding.- aBayesQR: A Bayesian method for reconstruction of viral
populations characterized by low diversity.- BeWith: A between-within method
for module discovery in cancer using integrated analysis of mutual
exclusivity, co-occurrence and functional interactions.- K-mer Set Memory
(KSM) motif representation enables accurate prediction of the impact of
regulatory variants.- Network-based coverage of mutational profiles reveals
cancer genes.- Ultra-accurate complex disorder prediction: case study of
neurodevelopmental disorders.- Inference of the human polyadenylation Code.-
Folding membrane proteins by deep transfer learning.- A network integration
approach for drug-target interaction prediction and computational drug
repositioning from heterogeneous information.- Epistasis in genomic and
survival data of cancer patients.- Ultra-fast identity by descent detection
in biobank-scale cohorts using positional burrows-wheeler transform.- Joker
de Bruijn: sequence libraries to cover all k-mers using joker characters.-
GATTACA: Lightweight metagenomic binning using kmer counting.- Species tree
estimation using ASTRAL: how many genes are enough.-Reconstructing antibody
repertoires from error-prone immune-sequencing datasets.- NetREX: Network
rewiring using EXpression - Towards context specific regulatory networks.- E
pluribus unum: United States of single cells.- ROSE: a deep learning based
framework for predicting ribosome stalling.