Muutke küpsiste eelistusi

E-raamat: Research and Evidence in Software Engineering: From Empirical Studies to Open Source Artifacts

Edited by (Universidade Da Beira Interior, Covilha, Portugal), Edited by
  • Formaat: 338 pages
  • Ilmumisaeg: 15-Jun-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000398878
  • Formaat - EPUB+DRM
  • Hind: 89,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 338 pages
  • Ilmumisaeg: 15-Jun-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000398878

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Research and Evidence in Software Engineering: From Empirical Studies to Open Source Artifacts introduces advanced software engineering to software engineers, scientists, postdoctoral researchers, academicians, software consultants, management executives, doctoral students, and advanced level postgraduate computer science students.

This book contains research articles addressing numerous software engineering research challenges associated with various software development-related activities, including programming, testing, measurements, human factors (social software engineering), specification, quality, program analysis, software project management, and more. It provides relevant theoretical frameworks, empirical research findings, and evaluated solutions addressing the research challenges associated with the above-mentioned software engineering activities.

To foster collaboration among the software engineering research community, this book also reports datasets acquired systematically through scientific methods and related to various software engineering aspects that are valuable to the research community. These datasets will allow other researchers to use them in their research, thus improving the quality of overall research. The knowledge disseminated by the research studies contained in the book will hopefully motivate other researchers to further innovation in the way software development happens in real practice.



The book stresses empirical studies to highlight research gaps, providing constructive feedback on existing research to aid software engineering researchers by providing code and software engineering data sets.

Preface. Editor Biographies. Contributor Biographies. 1 Performance of Execution Tracing with Aspect-Oriented and Conventional Approaches. 2 A Survey on Software Test Specification Qualities for Legacy Software Systems. 3 Whom Should I Talk To?: And How That Can Affect My Work. 4 Software Project Management: Facts versus Beliefs and Practice. 5 Inter-Parameter Dependencies in Real-World Web APIs: The IDEA Dataset. 6 Evaluating Testing Techniques in Highly-Configurable Systems: The Drupal Dataset. 7 A Family of Experiments to Evaluate the Effects of Mindfulness on Software Engineering Students: The MetaMind Dataset. 8 Process Performance Indicators for IT Service Management: The PPI Dataset. 9 Prioritization in Automotive Software Testing: Systematic Literature Review and Directions for Future Research. 10 Deep Embedding of Open Source Software Bug Repositories for Severity Prediction. 11 Predict Who: An Intelligent Game Using NLP and Knowledge Graph Model. 12 Mining Requirements and Design Documents in Software Repositories Using Natural Language Processing and Machine Learning Approaches. 13 Empirical Studies on Using Pair Programming as a Pedagogical Tool in Higher Education Courses: A Systematic Literature Review. 14 Programming Multi-Agent Coordination Using NorJADE Framework. Index.

Dr. Varun Gupta received a Ph.D. degree and Master of Technology in Computer Science and Engineering degree from Uttarakhand Technical University, India. Currently, he is a postdoctoral researcher at University of Beira Interior, Portugal.

Dr. Chetna Gupta is an Associate Professor in the Computer Science Engineering Department of Jaypee Institute of Information Technology. Noida, India. She has more than 15 years of academic experience and her research areas include software engineering, distributed software engineering, search based software engineering, risk management, and cloud computing.