Muutke küpsiste eelistusi

E-raamat: Research Practitioner''s Handbook on Big Data Analytics

  • Formaat: 310 pages
  • Ilmumisaeg: 04-May-2023
  • Kirjastus: Taylor & Francis Ltd
  • ISBN-13: 9781000578416
  • Formaat - EPUB+DRM
  • Hind: 161,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 310 pages
  • Ilmumisaeg: 04-May-2023
  • Kirjastus: Taylor & Francis Ltd
  • ISBN-13: 9781000578416

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This new volume addresses the growing interest in and use of big data analytics in many industries and in many research fields around the globe; it is a comprehensive resource on the core concepts of big data analytics and the tools, techniques, and methodologies. The book gives the why and the how of big data analytics in an organized and straightforward manner, using both theoretical and practical approaches.

The book’s authors have organized the contents in a systematic manner, starting with an introduction and overview of big data analytics and then delving into pre-processing methods, feature selection methods and algorithms, big data streams, and big data classification. Such terms and methods as swarm intelligence, data mining, the bat algorithm and genetic algorithms, big data streams, and many more are discussed. The authors explain how deep learning and machine learning along with other methods and tools are applied in big data analytics. The last section of the book presents a selection of illustrative case studies that show examples of the use of data analytics in industries such as health care, business, education, and social media.