Muutke küpsiste eelistusi

E-raamat: Resolution Of The Twentieth Century Conundrum In Elastic Stability

(Florida Atlantic Univ, Usa)
  • Formaat: 352 pages
  • Ilmumisaeg: 29-May-2014
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814583558
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 49,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 352 pages
  • Ilmumisaeg: 29-May-2014
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814583558
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There have been stability theories developed for beams, plates and shells — the most significant elements in mechanical, aerospace, ocean and marine engineering. For beams and plates, the theoretical and experimental values of buckling loads are in close vicinity. However for thin shells, the experimental predictions do not conform with the theory, due to presence of small geometric imperfections that are deviations from the ideal shape.

This fact has been referred to in the literature as 'embarrassing', 'paradoxical' and 'perplexing'. Indeed, the popular adage, “In theory there is no difference between theory and practice. In practice there is”, very much applies to thin shells whose experimental buckling loads may constitute a small fraction of the theoretical prediction based on classical linear theory; because in practice, engineers use knockdown factors that are not theoretically substantiated.

This book presents a uniform approach that tames this prima-donna-like and capricious behavior of structures that has been dubbed the 'imperfection sensitivity' — thus resolving the conundrum that has occupied the best minds of elastic stability throughout the twentieth century.
Preface vii
Acknowledgments xi
Pt 1 Introduction 1(18)
1 How I Got Involved with the Imperfect World of Imperfection Sensitivity
1(2)
2 Digest of History of Elastic Stability from Musschenbroek and Euler to Koiter
3(5)
3 Knockdown Factors
8(3)
4 Studies by the Caltech Group
11(8)
Pt
2. Probabilistic Resolution
19(76)
1 Bolotin's Pioneering Work
19(3)
2 Studies by the University of Waterloo Group
22(3)
3 Studies by the Harvard Group (Stochastic Subgroup)
25(7)
4 Ergodicity May Induce Large Errors
32(4)
5 Bolotin's Problem and Ergodicity Assumption
36(3)
6 Simulation of Initial Imperfections
39(3)
7 Resolution of Fraser-Budiansky-Amazigo Paradox for Stochastically Imperfect Columns on Nonlinear Foundation
42(20)
8 Studies by the Group of the University of Toronto
62(7)
9 Studies by the Group of Moscow Power Engineering Institute and State University
69(2)
10 Resolution of Amazigo-Budiansky Paradox for Stochastically Imperfect Cylindrical Shells
71(8)
11 Alternative Resolution of the Conundrum by the First-Order Second-Moment Method
79(4)
12 Corroboration Project STONIVOKS
83(6)
13 Delft's Other Challenge
89(6)
Pt 3 Hybrid Uncertainty in Imperfections and Axial Loading 95(20)
1 Introduction
95(1)
2 Basic Equations
95(2)
3 Positive-Valued Uniformly Distributed Imperfections
97(2)
4 Combined Randomness in Imperfection and Load for Positive Imperfection Values
99(3)
5 Negative-Valued Uniformly Distributed Imperfections
102(2)
6 Uniformly Distributed Imperfections Taking on Either Positive or Negative Values
104(4)
7 Combined Randomness in Imperfection and Load for Either Positive or Negative Imperfection Values
108(4)
8 Numerical Examples and Discussion
112(3)
Pt 4 Non-probabilistic Resolution 115(20)
1 Resolution of Conundrum via Nonprobabilistic Convex Modeling
115(6)
2 Competition between Probabilistic and Convex Analyses: Which One Wins?
121(3)
3 Brief History of Nonprobabilistic Uncertainty Modeling
124(11)
Pt 5 Nontraditional Imperfections in Shells 135(32)
1 Spatial Parametric Resonance and Other Novel Buckling Problems Inspired by James H. Starnes, Jr.
135(7)
2 Scatter in Load: Problem Description
142(1)
3 Combined Randomness in Imperfection and Thickness Variation for Deterministic Load
143(5)
4 Numerical Examples
148(3)
5 Combined Randomness in Imperfection, Thickness Variation and Load
151(10)
6 Numerical Examples
161(2)
7 Implications on Design Criteria
163(2)
8 Conclusion
165(2)
Pt 6 Lower Bound for Buckling Load in Presence of Uncertainty 167(18)
1 Introduction
168(3)
2 Convex Antioptimization
171(8)
3 Optimization of the Laminate Setup
179(3)
4 Conclusion and Outlook
182(3)
Pt 7 Miscellaneous Topics 185(46)
1 Comments on Some Later Deterministic Works
185(17)
2 Comments on Some Later Non-deterministic Works
202(6)
3 Topical Personal Reminiscences
208(7)
4 Establishment of the ASME Warner T. Koiter Medal
215(4)
5 Some Remarks about Priority
219(7)
6 Conclusion
226(5)
Appendix A. Analytical Analysis of the Nonsymmetric Version of the Budiansky-Hutchinson Model 231(10)
Appendix B. Elastic Stability: From Musschenbroek & Euler to Koiter - There Was None Like Koiter 241(6)
Appendix C 247(12)
1 Data Basis
247(3)
2 Minimum Volume Enclosing Hyper-Rectangle
250(2)
3 Minimum Volume Enclosing Hyper-Ellipsoid
252(1)
4 Numerical Determination of Buckling Load
253(1)
5 Numerical Derivatives of Buckling Load
254(3)
6 Experimentally Determined Buckling Loads
257(2)
References 259(62)
Author Index 321(6)
Subject Index 327