Muutke küpsiste eelistusi

E-raamat: Resummation and Renormalization in Effective Theories of Particle Physics

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 912
  • Ilmumisaeg: 02-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319226200
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 912
  • Ilmumisaeg: 02-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319226200

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure.In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate

methods, as applied to various effective models of chiral symmetry breaking in strong interactions and the BEH-mechanism of symmetry breaking in the electroweak theory. After introducing the basics of the functional integral formulation of quantum field theories and the derivation of different variants of the equations which determine the n-point functions, the text elaborates on the formulation of the optimized perturbation theory and the large-N expansion, as applied to the solution of these underlying equations in vacuum. The optimisation aspects of the 2PI approximation is discussed. Each of them is presented as a specific reorganisation of the weak coupling perturbation theory. The dimensional reduction of high temperature field theories is discussed from the same viewpoint. The renormalization program is described for each approach in detail and particular attention is paid to the appropriate interpretation of the notion of renormalization in the presence of the Landau sing

ularity. Finally, results which emerge from the application of these techniques to the thermodynamics of strong and electroweak interactions are reviewed in detail.

Effective Theories From Nuclear to Particle Physics.- Finite Temperature Field Theories: Review.- Divergences in the Perturbation Theory.- Optimized Perturbation Theory.- The Large-N Expansion.- Dimensional Reduction and Infrared Improved Treatment of Finite Temperature Transitions.- Thermodynamics of Strong Matter.- Finite Temperature Restoration of the Brout-Englert-Higgs Effect.- The Spectral Function.- Computation of the Basic Diagrams.- Integrals Relevant for Dimensional Reduction.

Arvustused

The lecture note deals with an effective field theory approach at finite temperatures. The lecture note provides a first comprehensive introduction into the field for students. (Johannes Blümlein, zbMATH 1355.81002, 2017)

1 Effective Theories from Nuclear to Particle Physics
1(10)
References
9(2)
2 Finite Temperature Field Theories: Review
11(38)
2.1 Review of Classical Field Theory
11(2)
2.2 Quantization and Path Integral
13(6)
2.3 Equilibrium
19(2)
2.4 Propagators
21(4)
2.5 Free Theories, Propagators, Free Energy
25(4)
2.6 Perturbation Theory
29(2)
2.7 Functional Methods
31(6)
2.7.1 Two-Point Functions and Self-Energies
34(2)
2.7.2 Higher n-Point Functions
36(1)
2.8 The Two-Particle Irreducible Formalism
37(3)
2.9 Transformations of the Path Integral
40(4)
2.9.1 Equation of Motion, Dyson--Schwinger Equations
41(1)
2.9.2 Ward Identities from a Global Symmetry
42(2)
2.10 Example: φ4 Theory at Finite Temperature
44(5)
References
47(2)
3 Divergences in Perturbation Theory
49(20)
3.1 Reorganizations of Perturbation Theory
50(2)
3.2 On the Convergence of Perturbation Theory
52(1)
3.3 Renormalization of the UV Divergences
53(3)
3.4 Renormalizability: Consistency of UV Renormalization
56(2)
3.5 Scale-Dependence and the Callan-Symanzik Equations
58(7)
3.5.1 Choice of Scale
61(1)
3.5.2 Landau Pole, Triviality, and Stability
62(1)
3.5.3 Stability and Renormalization
63(2)
3.6 The Wilsonian Concept of Renormalization
65(4)
References
68(1)
4 Optimized Perturbation Theory
69(28)
4.1 Infrared Divergences and Their Resummation
70(1)
4.2 The Optimization Strategy and the Renormalizability of the Optimized Series
71(4)
4.3 OPT for the φ4-Theory
75(3)
4.4 Optimization and Renormalization Schemes
78(3)
4.5 Optimized Perturbation Theory for the SU(3)L x SU(3)R Symmetric Meson Model
81(5)
4.6 OPT for the Three-Flavor Quark--Meson Model
86(2)
4.7 The 2PI Formalism as Resummation and Its Renormalization
88(9)
4.7.1 2PI Resummation as Optimized Perturbation Theory
89(2)
4.7.2 Perturbative Renormalization of the 2PI Equations
91(4)
References
95(2)
5 The Large-TV Expansion
97(42)
5.1 The Dyson--Schwinger Equation of the N-Component Scalar Theory
98(4)
5.2 The Large-N Closure and Its Recursive Renormalization
102(4)
5.3 Landau Singularity and Triviality
106(2)
5.4 Auxiliary Field Formulation of the O(N) Model
108(3)
5.5 Renormalization of the O(N)-Model in the Auxiliary Formulation
111(13)
5.5.1 Leading-Order Counterterm Action Functional
111(3)
5.5.2 Next-to-Leading-Order Counterterm Action Functional: Effects of the Landau Pole
114(10)
5.6 Large-n Approximation in U(n) Symmetric Models
124(10)
5.6.1 Auxiliary Fields and Integration over Large Multiplicity Fields
126(3)
5.6.2 Interpretation and Renormalization of V(LO)(υ, x, y0)
129(5)
5.6.3 Summary Conclusions of the Analysis
134(1)
5.7 The Quark-Meson Theory at Large Nƒ
134(5)
References
138(1)
6 Dimensional Reduction and Infrared Improved Treatment of Finite-Temperature Phase Transitions
139(22)
6.1 The φ4 Theory at Finite Temperature
142(2)
6.2 Two-Loop Integration Over the Nonstatic Fields
144(4)
6.3 The Effective Three-Dimensional Theory and Its Two-Loop-Accurate Effective Potential
148(2)
6.4 Local Coarse-Grained Effective Theory via Matching
150(3)
6.5 Dimensional Reduction of a Gauge Theory at the One-Loop Level
153(8)
References
159(2)
7 Thermodynamics of the Strong Matter
161(28)
7.1 The Thermodynamics of the π -- σ -- Quark System
162(4)
7.1.1 The T - 0 Excitation Spectra
162(3)
7.1.2 Change of the Ground State at Finite Temperature and Finite Density
165(1)
7.2 The U(3) x U(3) Meson Model
166(5)
7.2.1 Phase Transition in the Three-Flavor Quark--Meson Model
168(2)
7.2.2 Dependence of the Nature of the Transition on the Masses of the Goldstone Fields
170(1)
7.3 Equation of State of the Strong Matter
171(18)
7.3.1 Characterization of the Excitations
175(2)
7.3.2 Spectral Functions and Thermodynamics
177(3)
7.3.3 (In)distinguishability of Particles and the Gibbs Paradox
180(2)
7.3.4 Melting of the Particles and Phenomenology of the Crossover Regime in QCD
182(4)
References
186(3)
8 Finite-Temperature Restoration of the Brout--Englert--Higgs Effect
189(18)
8.1 The Reduced SU(2) Symmetric Higgs + Gauge Model
190(3)
8.2 Optimized Perturbation Theory for the Electroweak Phase Transition
193(6)
8.3 Results from the Numerical Simulation of the Electroweak Model Reduced with One-Loop Accuracy
199(3)
8.4 On the High-Accuracy Determination of the Critical Higgs Mass
202(5)
References
205(2)
A The Spectral Function
207(2)
A.1 Sum Rules
207(1)
A.2 Positivity
207(2)
B Computation of the Basic Diagrams
209(12)
B.1 Tadpole Integral
209(4)
B.2 The Bubble Diagram
213(5)
B.3 Dimensional Regularization
218(3)
C Integrals Relevant for Dimensional Reduction
221
C.1 Nonstatic Sum-Integrals
221(2)
C.2 Three-Dimensional Integrals
223
References
223